FIRST-IN-HUMAN STUDY OF GS-5718, AN ORAL IRAK-4 INHIBITOR, IN HEALTHY SUBJECTS: PHARMACOKINETICS, SAFETY, TOLERABILITY, AND ASSESSMENT OF EFFECT OF FOOD AND ACID REDUCING AGENTS ON EXPOSURE

K. Anderson1, C.H. Hsieh2, O. Gurtuvay1, A. Mathur3, J. Taylor4, A. Serone1, A.A. Othman1
1Gilead Sciences, Inc., Foster City, United States of America

Background: GS-5718 is a potent and selective interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitor in clinical development for treatment of inflammatory diseases.

Objectives: The aim of this first-in-human study was to evaluate the pharmacokinetics, safety, and tolerability of GS-5718; and the effect of food and acid-reducing agents (ARA) on GS-5718 pharmacokinetics in healthy subjects.

Methods: This was a blinded, randomized, placebo-controlled, single and multiple (once daily for 10 days) oral dose study. Healthy male and female subjects were enrolled in ascending dose cohorts and randomized to receive GS-5718 (15, 50 or 150 mg) or placebo. GS-5718 was administered fasted in the single ascending dose cohorts, and under fed conditions (standard meal) in the multiple dose cohorts. The effects of a high-fat meal and omeprazole (a representative ARA) on GS-5718 exposure was approximately dose proportional across the evaluated multiple ascending dose range. GS-5718 showed low-to-moderate pharmacokinetic variability with median half-life of 25 to 33 hours and 1.6 to 2.4-fold accumulation at steady-state, which was achieved by Day 5-7 of dosing. Food had no clinically meaningful impact on GS-5718 exposure (AUC and Cmax) at the 50mg dose. Co-administration of omeprazole with GS-5718 reduced GS-5718 exposure (AUC and Cmax) by 23% and 49%, respectively, at the 50mg dose.

Conclusion: GS-5718, administered once daily, was well tolerated following single or multiple dosing up to 150 mg. The pharmacokinetic and safety profile of GS-5718 support the further development in inflammatory diseases with once-daily administrations.


DOI: 10.1136/annrheumdis-2021-eular.2261

TOLEROGENIC DENDRITIC CELLS IN Rheumatoid Arthritis PatiENTS: NEWS AND PROMISES

Y. Ueki1, A. Kawakami1, Y. Ueki2, A. Kawakami1, N. Iwamoto3, S. Suzuki2, K. Fujikawa4, T. Arafami5, M. Mizokami6, A. Serone1, A. Mathur3, J. Taylor4, A. Serone1, A.A. Othman1
1Gilead Sciences, Inc., Foster City, United States of America; 2Advanced Preventive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan, Nagasaki, Japan; 3Sasebo City General Hospital, Department of Internal Medicine, Sasebo, Japan; 4Atomic Bomb Museum, Department of Rheumatology, Nagasaki, Japan; 5Japam Community Healthcare Organization, Ishayha General Hospital, Department of Rheumatology, Ishayha, Japan; 6Sasebo Chuo Hospital, Department of Rheumatology, Sasebo, Japan

Background: Tofacitinib is a non-selective first-generation JAK inhibitor and baricitinib was approved for the treatment of Rheumatoid arthritis several years after approval of tofacitinib. Randomized controlled trials have shown good treatment response for RA in these two drugs. However, the evaluation of these two drugs in real-world setting have been rarely reported, moreover, until now, no published data of a direct comparison among JAK inhibitors in RA have been available.

Objectives: To compare the efficacy and safety of the JAK inhibitors tofacitinib and baricitinib in patients with rheumatoid arthritis (RA) by using propensity score matching in a real-world setting.

Methods: A total of 242 patients with RA who were treated with baricitinib (n=161) or baricitinib (n=81) were enrolled. To avoid confounding factors we performed propensity score matching based on multiple baseline characteristic variables, and then 80 baricitinib-treated patients and 57 tofacitinib-treated patients were extracted for the direct comparison. A mixed effect model with a repeated measures analysis of variance (ANOVA) was performed to ascertain whether there were significant differences in clinical efficacy between the two treatment groups during the treatment period. Finally, we evaluated the predictive factor of clinical responses by performing univariate and multivariable logistic regression analyses.

Results: The mean delta disease activity scores (DAS28)-ESR from baseline to 6 months were –1.60 (tocafitinib) and –1.46 (baricitinib). The remission rate defined by the DAS28-ESR at 24 weeks were 21.1% (tocafitinib) and 25.0% (baricitinib). There was no significant difference in the clinical response between the baricitinib-treated and tofacitinib-treated groups. Although there was no significant difference, the concomitant use of methotrexate (MTX) showed better clinical efficacy in the cases of baricitinib treatment as compared with in the case of tofacitinib treatment. In both groups, the most common AE was herpes zoster infection, and the AE rates were similar between the two groups. However, the predictive factors contributing to clinical response differed. The concomitant use of oral steroid was independently associated with the achievement of DAS-low disease activity, whereas the concomitant use of MTX was associated with a higher rate of clinical remission in the baricitinib group. The number of biological and/or targeted synthetic DMARDs previously used and the DAS28-ESR at the time of initiation were associated with DAS-low disease activity.

Conclusion: This study indicate that tofacitinib and baricitinib had comparable efficacies and safety profiles in a real-world setting. However, the influence of clinical characteristics on the treatment response differed between these two drugs. Direct comparison between the two JAK inhibitors provide useful information to optimal use of JAK inhibitors in real-world settings.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.3469