SYNOVIAL MYELOID-STROMAL PATHOTYPE PREDICTS ONE-YEAR RADIOGRAPHIC PROGRESS IN ACTIVE RHEUMATOID ARTHRITIS

X. Zhang1, J. D. Ma1, D. H. Zheng1, C. Chen1, T. Wu1, J. Lin1, J. Jing1, Y. M. O1, Y. Y. Zou1, L. Dai1, Sun Yat-Sen University Sun Yat-Sen Memorial Hospital, Rheumatology, Guangzhou, China

Background: Rheumatoid arthritis (RA) is a heterogeneous disease with variable prognosis. The cellular composition in synovium is the driving force of joint destruction in RA, and the predictive values of histopathological assessments on the clinical outcomes of RA have been identified. However, current synovial histopathological assessments mainly focus on the infiltrated immunocytes to distinguish RA synovium into different synovial pathotypes. Whether addition of stromal cells improve the accuracy of histopathological assessments remains unknown.

Objectives: To distinguish synovial pathotypes of RA based on intercellular connection and explore their predictive value on one-year radiographic progression.

Methods: Active RA patients who underwent needle synovial biopsy at baseline were recruited from a real-world prospective cohort. Clinical data were evaluated at baseline and 1, 3, 6, 12 months. Histopathological assessments included Krenn synovitis score and semiquantitative score of immunohistochemical staining for CD20, CD3, CD4, CD68, CD8, CD68, CD31 and CD90. Cluster analysis was used to distinguish synovial pathotypes. The primary outcome was one-year radiographic progression defined as a change in total Sharp/van der Heijde modified total Sharp score≥0.5 units.

Results: 1. Among 134 RA patients who received synovial biopsy at baseline and finished one-year follow-up, 105 had qualified synovial tissue. The mean age was 50.2±13.3 years with 77.1% female. The median disease duration was 24 (9-120) months. All patients were active RA, 64.8%, 26.7% and 8.6% patients in high, moderate and low disease activity, respectively. There were 41 (39%) patients who have never been treated with corticosteroids or disease-modifying anti-rheumatic drugs.

2. During one-year follow-up, there were 48.6%, 63.8%, 71.4%, and 69.5% patients achieved CDAI LDA target, and 12.4%, 30.5%, 34.3%, and 32.4% patients achieved CDAI remission after 1, 3, 6, and 12 months, respectively. A total of 33 (31.4%) patients had radiographic progression.

3. All patients were divided into three clusters using cluster analysis based on the seven synovial cellular scores. Patients in cluster 1 (n=50, 47.6%) had higher scores of sublining CD68+ macrophages, CD31+ endothelial cells and CD90+ fibroblasts, thus named as myeloid-stromal pathotype. Patients in cluster 2 (n=26, 24.8%) had higher scores of CD20+ cells, CD38+ plasma cells, CD4+ T cells and CD68+ T cells, thus named as lymphoid pathotype. Patients in cluster 3 (n=29, 27.6%) had low scores of all seven cell types, thus named as pauci-cellular pathotype (Figure 1).

4. RA patients with baseline synovial myeloid-stromal pathotype showed higher rate of one-year radiographic progression versus lymphoid and pauci-cellular pathotypes (48% vs. 16.4%, P<0.001), whereas there was no difference between lymphoid and pauci-cellular pathotypes (11.5% vs. 20.7, P=0.475). Adjusted for confounding factors including age, sex, smoking, disease duration, RF status, ACPA status, CDAI, SDAI, qCRP and values of baseline, multivariate logistic regression analysis showed that baseline synovial myeloid-stromal pathotype independently predicted one-year radiographic progression (AOR=3.602, 95%CI:1.257:10.324, P=0.017, Table 1).

Conclusion: Baseline synovial myeloid-stromal pathotype in RA can predict one-year radiographic progression.

Funding: This work was supported by National Natural Science Foundation of China (no. 81971527, 81801606 and 81801605), Guangdong Natural Science Foundation (no. 2018A030313541 and 2018A030313690), Guangdong Medical Scientific Research Foundation (no. A2018062), Guangdong Basic and Applied Basic Research Foundation (no. 2019A1510111928 and 2020A151510061), and Science and Technology Program of Guangzhou (no. 201904010088).

REFERENCES:

VALIDATION OF THE SIMPLIFIED DISEASE ACTIVITY INDEX (SDAI) WITH A QUICK QUANTITATIVE C-REACTIVE PROTEIN ASSAY (qCRP) IN PATIENTS WITH RHEUMATOID ARTHRITIS: A NATIONAL, MULTICENTER STUDY

J. Schally1, H. C. Brandt2, J. Brandt-Juergens2, G. R. Burmester2, H. Habel1, H. Kading1, K. Karberg2, S. Luderis1, B. Muah1, M. Protopopov1, V. Rios Rodriguez1, M. Torgutalp1, M. Verba1, F. Proft1, 1Charité – Universitätsmedizin Berlin, Division of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Berlin, Germany; 2Praxis für Rheumatologie und Innere Medizin, Berufsgenossenschaftliche Kliniken, Berlin, Germany; 3Rheumazentrum Bad Aibling, Bad Aibling, Germany; 4Rheumatologische Schwerpunktpraxis, Berlin, Germany; 5Charité – Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; 6Rheumazentrum Berlin, Rheumapris, Berlin, Berlin, Germany

Background: Therapeutic decisions in RA patients should be based on regular disease activity assessment using scores like the Simplified Disease Activity Index (SDAI) or the Clinical Disease Activity Index (CDAI) [1]. The CDAI has the benefit of being immediately available, while the SDAI encompasses with the C-reactive protein (CRP) an acute phase reactant and therefore is the recommended score for the use in clinical trials. However, CRP determination takes hours to days, thus hindering the treat-to-target concept using the SDAI. Quick quantitative CRP (qCRP) tests allow CRP measurement within a few minutes. Therefore, qCRP based SDAI (SDAI-Q) could combine the advantages of both scores.

Objectives: To validate the SDAI-Q in a prospective, multicenter study of RA patients.

Methods: The study was conducted in five centers in Berlin, Germany. Consecutive adult (≥ 18 years) RA patients were included. In addition to a rheumatological assessment, including patient reported outcomes, routine CRP was measured in the local labs. Additionally, a qCRP testing with the “QuikRead go instrument” (Aidion Oy, Finland) was performed locally (measurement range 0.5 - 200 mg/l). Statistical analysis included descriptive statistics, cross tabulation and weighted Cohen’s kappa comparing disease activity categories, Bland-Altman plots and intraclass correlation coefficient (ICC) for CRP, qCRP, SDAI, SDAI-Q and CDAI.

Results: In this study 100 RA patients were included (mean age: 60.9 years, mean disease duration: 11.4 years, 73.0% were female, 63.0%, RF positive, 57.0% ACPA positive, 49.0% positive and 29% negative for both parameters). 75.0% were treated with csDMARD, 15% with tsDMARDs, 39.0% with bDMARDs and 40% with glucocorticoids (mean prednisolone equivalent: 3.6 mg prednisolone/d). Mean CRP and qCRP-levels were 6.97 and 789 mg/l, respectively (ICC declared). SDAI had lower values (ICC 0.87; 95% CI:0.76;0.93). Comparing SDAI-Q and SDAI, all patients (100%) achieved the same disease activity status (Table 1A); weighted Cohen’s kappa was 1.000 (95%CI:1.000;1.000), ICC for SDAI-Q and SDAI was 1.000 (95% CI: 1.000; 1.000). The agreement of SDAI-Q and SDAI is shown in a Bland-Altman plot (Figure 1). When comparing the CDAI with the SDAI-Q 93 patients (93%) were assigned to the same disease activity category (Table 1B); weighted Cohen’s kappa was 0.729 (95%CI: 0.578; 0.881). ICC for numerical values of SDAI-Q and CDAI was 0.989 (95% CI: 0.978; 0.994).

Conclusion: SDAI-Q showed an absolute agreement with SDAI on the assignment to disease activity categories with the important advantage of time. With SDAI-Q, rheumatologists could base their clinical decision-making immediately on an index-based disease activity measurement by using a composite score considering acute phase reactants. Consequently, SDAI-Q can be integrated in clinical routine and clinical trials and could be implemented into the treat-to-target concept in RA patients.

REFERENCES: