IgG autoantibody levels (P<0.05) towards another antigen, dual specificity mitogen-activated protein kinase kinase 6 (MAP2K6), were also observed in ACPA-seronegative subjects compared to ACPA-seropositive and controls. In contrast, we found significantly higher IgG autoantibody levels (P<0.05) in ACPA-seropositive individuals compared to ACPA-seronegative and controls towards two antigens, anosmin-1 (ANOS-1) and muscle related coiled-coil protein (MURC). ANOS-1 shows also significantly higher IgG reactivity frequency in ACPA-seropositive individuals compared to ACPA-seronegative and controls (22%, 9% and 6% respectively; P<0.05). Interestingly, three out of the four antigens discovered to be associated with the ACPA status in early RA are highly expressed in lungs and heart, two of the main extraarticular sites affected in RA. No significant differences were observed at IgA levels for any of the antigens analyzed.

Table 1. Scheme of the different phases of the study, the features within each phase and the results. The reactivity to four antigens allows to distinguish ACPA-seronegative (ACPA−), ACPA seropositive (ACPA+) and controls.

<table>
<thead>
<tr>
<th>Phases</th>
<th>Untargeted discovery</th>
<th>Targeted discovery</th>
<th>Targeted validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of samples</td>
<td>80 ACPA−</td>
<td>80 ACPA−</td>
<td>358 ACPA-372 Controls</td>
</tr>
<tr>
<td>Antigen array</td>
<td>Planar</td>
<td>Suspension</td>
<td>Suspension</td>
</tr>
<tr>
<td>platform arrays</td>
<td>bead array 1</td>
<td>bead array 2</td>
<td></td>
</tr>
<tr>
<td>Number of antigens</td>
<td>2660</td>
<td>62</td>
<td>27</td>
</tr>
<tr>
<td>Number of candidate biomarkers</td>
<td>62</td>
<td>27</td>
<td>4 (TSPYL4,MAP2K6, ANOS1,MURC)</td>
</tr>
</tbody>
</table>

Conclusion: Upon further validation in other RA early samples cohort, our data suggests the measurement of these four autoantibodies may be useful for the early diagnosis of ACPA-seronegative RA and give insight into the pathogenesis of the different RA subsets.

Character from table content including title and footnotes:

Disclosure of Interests: None declared.

DOI: 10.1136/annrheumdis-2021-eular.2514

FIBRIN DEPOSITION IS AN ACTIVE TRIGGER OF CARTILAGE DEGENERATION IN RHEUMATOID ARTHRITIS

T. Hügle1*, S. Nasl1, D. Ehirchiou1, P. Omoumi2, A. So1, N. Busso1.
Lausanne University Hospital, CHUV, Department of Rheumatology, Lausanne, Switzerland; 1Lausanne University Hospital, CHUV, Radiology, Lausanne, Switzerland.

Background: Fibrin(ogen) maintains inflammation in various disorders but has never been linked to cartilage damage in rheumatoid arthritis (RA) or other forms of inflammatory arthritis.

Objectives: To investigate the role of fibrin deposition on cartilage integrity in arthritis.

Methods: Fibrin deposition on knee cartilage was analyzed by immunohistochemistry in RA patients and in murine adjuvant-induced arthritis (AIA). In chondrocytes, fibrinogen expression (Fgα, Fγγ), Fgγ and procoagulant activity were evaluated by qRT-PCR and turbidimetry respectively. Fibrin-induced catabolic genes were assessed by qRT-PCR in chondrocytes. Fibrin-mediated chondro-synovial adhesion (CSA) with subsequent cartilage tears was studied in co-cultures of human RA cartilage with autologous synoviocytes, in the AIA model, and by MRI. The link between fibrin and calcification was examined in human RA cartilage stained for calcific deposits and in vitro in fibrinogen-stimulated chondrocytes.

Results: Fibrin deposition on cartilage correlated with the severity of cartilage damage in human RA explants and in AIA wildtype (WT) mice, while fibrinogen-deficient (Fgγ−) mice were protected. Accordingly, fibrin upregulated catabolic enzymes (Adams5 and Mmp13) in chondrocytes. Secondly, CSA was present in fibrin-rich and damaged cartilage in AIA WT but not in Fgγ− mice. In line, autologous human synoviocytes, cultured on RA cartilage explants, adhered exclusively to fibrin-positive degraded areas. Galadolinium-enhanced MRI of human joints showed contrast-enhancement along cartilage surface in RA patients but not in controls. Finally, fibrin co-localized with calcification in human RA cartilage and triggered chondrocyte mineralization inducing pro-calcification genes (Anx5, P11, Pct1) and cytokine (IL-6.

Conclusion: Although at a much lesser extent, we observed similar fibrin-mediated mechanisms in osteoarthritis (OA).

Disclosure of Interests: None declared.

DOI: 10.1136/annrheumdis-2021-eular.2521

NAD+ BOOSTERS REESTABLISH THE ALTERED NAD+ METABOLISM OF LEUKOCYTES FROM RHEUMATOID ARTHRITIS PATIENTS IMPROVING THEIR OXIDATIVE, APOPTOTIC AND INFLAMMATORY STATUS

C. Perez-Sánchez1*, L. M. Sánchez-Mendoza2, M. D. C. Abalos-Aguilera1, N. Barbarroa Puerto1, M. Luque-Teff1, A. M. Patricio-Trives1, I. Arias de la Rosa1, J. A. Moreno1, M. I. Burron1, J. A. González-Reyes3, E. Collantes Estevez4, A. Escudero Contreras5, C. Lopez-Pedrera1, J. M. Villalba6, IMIBIC, Rheumatology Service, IMIBIC/Reina Sofia Hospital/University of Cordoba, Cordoba, Spain, Cándara, Spain; 7IMIBIC, Department of Cell Biology, Physiology and Immunology, University of Cordoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Cándara, Spain, Córdoba, Spain; 1IMIBIC, Rheumatology Service, IMIBIC/Reina Sofia Hospital/University of Cordoba, Cordoba, Spain.

Background: NAD+ is an important co-factor and coidentifier for multiple cellular processes that exhibits antioxidant, anti-apoptotic and anti-inflammatory properties. Pre-clinical studies in animal models of Rheumatoid Arthritis (RA) have demonstrated the therapeutic potential of NAD+ boosters in the control of the disease activity. However, to date no studies have been set up to evaluate the NAD+ metabolism and the therapeutic effects of NAD+ boosters in RA patients.

Objectives: 1- To study the NAD+ metabolism in RA patients and its association with key clinical features. 2- To evaluate the effect of anti-TNF therapy in the NAD+ metabolism.

Methods: Plasma and PBMCs were purified from 100 RA patients and 50 healthy donors (HDs). Moreover, an additional cohort of 50 RA patients treated with Anti-TNF therapy was analyzed before and after 6 months of treatment. NAD+ levels were determined by using the NAD+/NADH-Glo Assay. NAD+-consuming genes expression were analyzed by RT-PCR. In parallel, PBMCs from eight HDs and eight active RA patients were treated ex vivo with 1 mM of NAD+ boosters including nicotinamide (NAM), nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN). After 24 hours, intracellular reactive oxygen species (ROS) levels (DCFDA) and the percentage of apoptotic PBMCs (annexin V/PI) were assessed by flow cytometry. Lastly, a panel of key pro-inflammatory genes were evaluated by RT-PCR.

Results: NAD+ and NADH levels were significantly reduced in plasma and PBMCs of RA patients compared with HDs and directly related to disease activity (DAS28, CDAI, SDAI). Accordingly, the expression levels of genes involved in the consumption of NAD+ such as SIRT−1, CD38 and PARP-1 were found up-regulated in PBMCs from RA patients. Anti-TNF therapy for 6 months restored the altered NAD+ levels towards those showed by HDs. Furthermore, the clinical response promoted by Anti-TNF therapy (changes in DAS28) correlated with changes in NAD+ levels. The in vitro treatments of PBMCs isolated from active RA patients with NAD+ boosters significantly increased the NAD+ levels and promoted a deep reduction of intracellular ROS levels, the percentage of apoptotic cells and the expression levels of key inflammatory mediators, such as IL-6, IL-8, IL-18, TNF-α, CCL2, IL-23, and STAT-3.

Conclusion: 1- NAD+ metabolism is altered and associated with the disease activity of RA patients, involving both, reduced NAD+ levels and increased expression of NAD+-consuming genes. 2. Anti-TNF therapy restored NAD+ levels, which were directly linked to the clinical effectiveness. 3. NAD+ boosters reduced the oxidative, apoptotic and inflammatory profiles of RA leukocytes through the parallel increase of intracellular NAD+ levels. Thus, NAD+ boosters might be considered novel therapeutic tools for RA patients.

Acknowledgements: Supported by P18/00387, RIER RD16/0012/0015, RTI2018-100695-B-I00, P18-RT-4264 and CVI276, co-funded with FEDER.

Disclosure of Interests: None declared.

DOI: 10.1136/annrheumdis-2021-eular.2550

ANTI-ACETYLATED PROTEIN ANTIBODIES IN RHEUMATOID ARTHRITIS (RA): CLUES FOR THE STARTING POINT OF AUTOANTIBODY RESPONSES IN RA

T. J. van Wesemael1*, A. L. Dorjée1, T. Huizinga1, A. van der Helm-van Mil1, R. Toes1, D. van der Woude1.

Background: Rheumatoid arthritis (RA) is characterized by autoantibodies such as rheumatoid factor (RF) and anti-modified protein antibodies (AMPAs) that are directed against citrullinated protein antigens (ACPAs) and anti-carbamylation protein.