proinflammatory cytokine (TNF-α, IFN-γ, IL-2, GM-CSF, IL-17A, IL-22, IL-4) production was markedly different between ACPAneg and ACPAPos RA patients with hierarchical clustering and PCA analysis revealing endotype specific cytokine profiles with ACPAneg RA patient synovial T cells showing increased TNF-α (P=0.01) expression. RNAseq analysis of RA patient synovial tissue revealed significant disease endotype specific gene signatures with specific enrichment for B cell receptor signalling and T cell specific pathways in ACPAPos compared to ACPAneg RA patients. Additionally, significantly different chemokine receptor expression based on RA patient ACPA status was observed with increased CXCR3 (P<0.001), CCR7 (P=0.002), and CCR2 (P=0.004) but decreased CXCR7 (P=0.007) expression in ACPAPos compared to ACPAneg RA patient synovial biopsies.

Conclusion: ACPA status associates with unique synovial tissue immune cell and gene profile signatures highlighting differences in the underlying immunological mechanisms involved, therefore reinforcing the need for a treat to target approach for both endotypes of RA.

Results: IL-40 was overexpressed in RA synovial tissue compared to OA, particularly by synovial fibroblasts and immune cells such as B and T lymphocytes, macrophages and neutrophils. The levels of IL-40 were significantly higher in the synovial fluid of RA patients compared to OA (33.2 (6.6-68.9) vs. 0.7 (0.1-2.4) ng/ml; p<0.0001). In addition, IL-40 was increased in the serum of RA patients compared to SLE, OA or HC (4.8 (1.7-24.9) vs. 1.4 (1.0-18), 1.6 (0.6-3.1) or 1.5 (0.7-27) ng/ml; p=0.0001 for all) and decreased after 16 (p<0.01) and 24 weeks (p<0.0001) in a subgroup of rituximab treated patients with RA. IL-40 levels in RA patients correlated with autoantibodies rheumatoid factor (IgM) and anti-citrullinated protein antibody (ACPRA) in the serum (p<0.0001 and p<0.01) as well as in the synovial fluid (p<0.0001 and p<0.01). IL-40 in RA synovial fluid was also significantly associated with DAS28 (p<0.05), synovial fluid leukocyte count (p<0.01), number of swollen joints (p<0.05) and neutrophil attractants IL-8 (p<0.01) and MIP-1α (p<0.01). RA synovial fibroblasts exposed to recombinant IL-40 increased secretion of IL-8 (p<0.01), MCP-1 (p<0.05) and MMP-13 (p<0.01) compared to unstimulated cells in in vitro conditions.

Conclusion: Our results show for the first time that IL-40 is elevated in RA and decreases following B-cell depletion therapy. The association of IL-40 with autoantibodies and chemokines may imply its potential involvement in RA development. Moreover, IL-40 up-regulates the secretion of chemokines and MMP-13 by synovial fibroblasts, indicating its role in the regulation of inflammation and tissue destruction in RA.

Acknowledgements: Supported by MHCR 023728 a SVV 260 523

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.2339

Figure 1. RNAseq analysis of synovial tissue biopsies revealed specific T cell related pathway enrichment in ACPA positive compared to ACPA negative RA patients (n=50, analysis performed with the DESeq2 and pathway pipelines in R).

Disclosure of Interests: Achilles Floudas: None declared, Mary Canavan: None declared, Trudy McGarry Employee of: Novartis, Vinod Krishna Employee of: Janssen, Sunil Nagpal Employee of: Janssen, Dougal Veale Speakers bureau: Abbvie, Janssen, Novartis, MSD, Pfizer, UCB, Consultant of: Abbvie, Janssen, Novartis, MSD, Pfizer, UCB, Grant/research support from: Janssen, Abbvie, Pfizer, UCB, Urosz, Foran, Brueckers bureau: Abbvie, Grant/research support from: Janssen, Abbvie, Pfizer, UCB

DOI: 10.1136/annrheumdis-2021-eular.1885

POS0389

NEUTROPHIL AND MONOCYTE EXTRACELLULAR TRAPS IN RHEUMATOID ARTHRITIS: POTENTIAL SOURCE OF DIAGNOSTIC BIOMARKERS

A. Trofimenko, S. Bedina, M. Mamus, E. Mozgovaya, S. Spitsina.

1. Research Institute of Clinical and Experimental Rheumatology Named After A.B. Zborovsky, Clinical Biochemistry Lab, Volgograd, Russian Federation

Background: Up-to-date quite high rheumatoid arthritis (RA) prevalence has also a trend towards steady increase for several decades. Earliest possible diagnosis and personalized treatment of RA are commonly believed to be principal way to prevent or diminish joint destruction. Emerging biomarkers retrieval has therefore critical importance for improvement of RA treatment outcomes, especially for its biological treatment. One of upcoming sources of new biomarkers is newly discovered phenomenon of neutrophil extracellular traps (NET) and monocyte extracellular traps (MET) formation, specifically in RA.

Objectives: Evaluation of peripheral blood neutrophils and monocytes ability to generate NET and MET spontaneously and after induction in vitro in RA.

Methods: The research was carried out in agreement with the WMA Declaration of Helsinki principles. 30 patients with verified RA according to the ACR/ EULAR 2010 criteria were included in the study. 30 healthy volunteers were enrolled as a reference group. RA disease activity was assessed using DAS28 score. None of patients included in the study used any anti-rheumatic and anti-inflammatory drugs during the last 4 weeks before the study.

Results: Mean contamination fraction of neutrophils and monocytes in the reference group did not exceed 3% and 2%, respectively. Mean purity of neutrophils in RA group was 93.1±6.1%, and cell viability in every sample was above 95.4±5.1%. Mean purity of monocyte fraction in RA group was 98.4±6.4%, cell viability in every sample was above 93.4±4.8%. Spontaneous NET and MET formation was observed in neutrophils and monocytes isolated from both RA patients and, significantly less, in healthy controls. Neutrophils from ACPA-positive RA patients were found to reveal increased spontaneous and induced NETs formation compared to ACPA-negative RA patients. Monocytes did not demonstrate any difference between these subgroups.

Conclusion: NETs could probably be considered as a candidate source of citrulline autoantigen participating in autoantibody production, whereas METs may play less important role in this phenomenon. NETs and ETs could be considered as potential diagnostic biomarkers of RA. Further studies of NETosis and EToxi in RA patients can promote emerging researches for targeted therapy of RA.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.2408