declared, Kimmie Hyrich Speakers bureau: Abbvie unrelated to this study, Grant/ research support from: BMS, UCB, and Pfizer, all unrelated to this study, Anja Strangfeld Paid instructor for: AbbVie, MSD, Roche, BMS, Pfizer, outside the submitted work, Grant/research support from: grants from a consortium of 13 companies (among them AbbVie, BMS, Celtrion, Fresenius Kabi, Lilly, Mylan, Hexal, MSD, Pfizer, Roche, Samsung, Sanofi-Aventis, and UCB) supporting the German RABBiT register, outside the submitted work, Laure Gossec Consultant of: Abbvie, Biogen, Celgene, Janssen, Lilly, Novartis, Pfizer, Sanofi-Aventis, UCB, unrelated to this study, Grant/research support from: Pfizer, all unrelated to this study, Eleni Nikhorou: None declared, Kristi D’Silva: None declared, Naomi Serling-Boyden: None declared, Philippe Dieudé Consultant of: Boehringer Ingelheim, Bristol-Myers Squibb, Lilly, Sanofi, Pfizer, Chugai, Roche, Janssen unrelated to this study, Grant/research support from: Bristol-Myers Squibb, Chugai, Pfizer, unrelated to this work, A. Palomäki, T. Laitinen, J. Koskelä, A. Palotie, N. MärsJon behalf of FinnGen. 7Turku University Hospital, Centre for Rheumatology and Clinical Immunology, Turku, Finland; 8Tampere University Hospital, Administration Center, Tampere, Finland; 9University of Helsinki, Institute for Molecular Medicine Finland, FIMM, HIIFE, Helsinki, Finland; 10Massachusetts General Hospital, Analytic and Translational Genetics Unit, Department of Medicine, Boston, United States of America; 11Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, United States of America

Background: The promoter variant rs3570595 in MUC5B is the strongest known genetic risk factor for rheumatoid arthritis-associated interstitial lung disease (RA-ILD) [1]. There is, however, no large-scale data on the impact of MUC5B on the long-term incidence of RA-ILD.

Objectives: To describe long term risk of RA-ILD in RA patients carrying MUC5B variant compared to non-carriers with RA.

Methods: FinnGen is a collection of epidemiological cohorts and hospital bio- bank samples, linking genotypes with up to 46 years of follow-up within nationwide registries. Diagnoses of RA and ILD were identified from the Finnish national registries. Diagnoses of RA and ILD were identified from the Finnish national registries. Diagnoses of RA and ILD were identified from the Finnish national registries. Diagnoses of RA and ILD were identified from the Finnish national registries.

Results: Out of the 248,400 individuals, 5534 patients have been diagnosed with RA, out of whom 178 (3.2%) developed ILD. MUC5B was a strong predictor of ILD in RA patients [HR 2.14, 95%CI (1.36-3.2)]. In patients with RA, MUC5B conferred a lifetime risk of 14.5% (95%CI 10.7%-18.1%), compared to 5.2% (4.1%-6.2%) in MUC5B non-carriers with RA (Figure). In the population, MUC5B carriers and MUC5B non-carriers had lifetime risks of 3.9% and 1.3%, respectively.

The risk difference started to emerge at age 65. The risk was highest in men with RA who are MUC5B carriers: 18.5% (11.1%-25.2%) developed ILD, compared to 8.5% (6.1%-10.9%) of MUC5B non-carriers with RA.

Conclusion: We report findings from a large longitudinal study, showing that MUC5B confers a considerable lifetime risk of RA-ILD, and contributes to increased morbidity. These findings have clinical implications for improving identification of RA patients at high risk of developing ILD.

REFERENCES:

Disclosure of Interests: Antti Palomäki Speakers bureau: MSD, Pfizer, Sanofi; Consultant of: Pfizer, Abbvie, Tarja Laitinen: None declared, Jukka Koskela Speakers bureau: Pfizer, Aarno Palotie: None declared, Nina Mars: None declared

DOI: 10.1136/annrheumdis-2021-eular.619

OP0007

MUC5B PROMOTER VARIANT AND LONG-TERM INCIDENCE OF INTERSTITIAL LUNG DISEASE IN PATIENTS WITH RHEUMATOID ARTHRITIS: A POPULATION BIOBANK STUDY OF 250,000 INDIVIDUALS

A. Palomäki1, T. Laitinen2, J. Koskelä3, A. Palotie4,5, N. Märs6On behalf of FinnGen. 7Turku University Hospital, Centre for Rheumatology and Clinical Immunology, Turku, Finland; 8Tampere University Hospital, Administration Center, Tampere, Finland; 9University of Helsinki, Institute for Molecular Medicine Finland, FIMM, HIIFE, Helsinki, Finland; 10Massachusetts General Hospital, Analytic and Translational Genetics Unit, Department of Medicine, Boston, United States of America; 11Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, United States of America

Background: The promoter variant rs3570595 in MUC5B is the strongest known genetic risk factor for rheumatoid arthritis-associated interstitial lung disease (RA-ILD) [1]. There is, however, no large-scale data on the impact of MUC5B on the long-term incidence of RA-ILD.

Objectives: To describe long term risk of RA-ILD in RA patients carrying MUC5B variant compared to non-carriers with RA.

Methods: FinnGen is a collection of epidemiological cohorts and hospital bio- bank samples, linking genotypes with up to 46 years of follow-up within nationwide registries. Diagnoses of RA and ILD were identified from the Finnish national hospital discharge, medication reimbursement and cause-of-death registries. We identified from the Finnish national registries.

Results: Out of the 248,400 individuals, 5534 patients have been diagnosed with RA, out of whom 178 (3.2%) developed ILD. MUC5B was a strong predictor of ILD in RA patients [HR 2.14, 95%CI (1.36-3.2)]. In patients with RA, MUC5B conferred a lifetime risk of 14.5% (95%CI 10.7%-18.1%), compared to 5.2% (4.1%-6.2%) in MUC5B non-carriers with RA (Figure). In the population, MUC5B carriers and MUC5B non-carriers had lifetime risks of 3.9% and 1.3%, respectively.

The risk difference started to emerge at age 65. The risk was highest in men with RA who are MUC5B carriers: 18.5% (11.1%-25.2%) developed ILD, compared to 8.5% (6.1%-10.9%) of MUC5B non-carriers with RA.

Conclusion: We report findings from a large longitudinal study, showing that MUC5B confers a considerable lifetime risk of RA-ILD, and contributes to increased morbidity. These findings have clinical implications for improving identification of RA patients at high risk of developing ILD.

REFERENCES:

Disclosure of Interests: Antti Palomäki Speakers bureau: MSD, Pfizer, Sanofi; Consultant of: Pfizer, Abbvie, Tarja Laitinen: None declared, Jukka Koskela Speakers bureau: Pfizer, Aarno Palotie: None declared, Nina Mars: None declared

DOI: 10.1136/annrheumdis-2021-eular.619

OP0008

A RANDOMIZED, DOUBLE-BLIND, PLACEBO-CONTROLLED PHASE III TRIAL OF IVIG 10% IN PATIENTS WITH DERMATOMYOSITIS, THE PRODERM STUDY: RESULTS AND SAFETY

R. Agarwal1, C. Charles-Schoeman2, J. Schess3, Z. Bates-Corno4, M. Dincă5, Z. Gripe6, S. Moiseev7, C. V. Oddis8, E. Schiopu9, J. Vencovsky10, I. Bedkmann11, T. Levine12, E. Clodi13, A. T. Proedom Investigators14, 1University of Pittsburgh, Rheumatology, Pittsburgh, United States of America; 2UCCLA Health, Rheumatology, Los Angeles, United States of America; 3Friedrich Baur Institute, University of Munich, Neurology, Munich, Germany; 4University of Szeged, Faculty of Medicine, Dermatology, Szeged, Hungary; 5University of Kansas, Medical Center, Neurology, Kansas City, United States of America; 6University of Debrecen, Department of Internal Medicine, Debrecen, Hungary; 7First Moscow State Medical University, Department of Internal Medicine, Moscow, Russian Federation; 8University of Pittsburgh, Rheumatology, Pittsburgh, United States of America; 9Michigan Medicine, Rheumatology, Ann Arbor, United States of America; 10Charles University, Rheumatology, Prague, Czech Republic; 11Octapharma PPG, Global Medical & Scientific Affairs, Vienna, Austria; 12Phoenix Neurological Associates, Neurology, Phoenix, United States of America; 13Octapharma PPG, Global Medical & Scientific Affairs, Vienna, Austria; 14Hospitals in different countries worldwide, Rheumatology-Dermatology-Neurology, Vienna, Austria

Background: Dermatomyositis (DM) is a rare chronic systemic autoimmune disease with characteristic skin rash and progressive proximal muscle weakness. Current therapies encompass corticosteroids and other immunosuppressants and intravenous immunoglobulins (IVIg), however, none of these therapies are proven by randomized controlled phase 3 studies. There have been no large randomized clinical trials supporting the efficacy and safety of IVIg in DM.

Objectives: The ProDERM study aimed to evaluate the efficacy and safety/tolerability of IVIg in DM patients in a double-blind, randomized, placebo-controlled, international multi-center, phase III clinical trial.
Methods: The trial consisted of a double-blind, placebo-controlled First Period (16 weeks), in which adult patients with definite or probable DM (according to Bohan and Peter criteria) were randomized 1:1 to either high dose IVIg (2g/kg every 4 weeks) or placebo. Patients on placebo and patients without clinical worsening while on IVIg treatment entered the open label Extension Period (24 weeks) and received 2g/kg IVIg infusions every 4 weeks. To be included, subjects must have active disease with a manual muscle testing-8 (MMT-8) score < 142/150. Patients who showed clinical worsening (defined according to Oddis et al, 2013 - with slight adaptation) at 2 consecutive visits between week 8 and week 16 were switched to the alternate treatment arm. Primary endpoint was the proportion of responders in the IVIg vs. placebo arm at week 16, where response was defined per 2016 ACR/EULAR Miositis response criteria of at least minimal improvement [Total Improvement Score (TIS) ≥ 20 points]) and without clinical worsening at 2 consecutive visits up to week 16.

Results: A total of 95 adult DM patients (mean age: 53 years; 75% females; 92% Caucasian) were enrolled, with 47 and 48 randomized to IVIg and placebo, respectively. Baseline clinical characteristics (including medical history and prior DM medication) were balanced between the 2 arms. The study met the primary endpoint at week 16, with the proportion of responders being significantly higher in the IVIg group (37/47; 78.7%) as compared to the placebo group (21/48; 43.8%; p-value 0.0008; Table 1).

Table 1. Total Improvement Score – Analysis of Proportion of Responders at Week 16 (Full Analysis Set, N=95)

<table>
<thead>
<tr>
<th>TIS Response</th>
<th>octagam 10%</th>
<th>Placebo</th>
<th>Difference octagam 10% – placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (%) of responders</td>
<td>37 (78.72%)</td>
<td>21 (43.75%)</td>
<td>16</td>
</tr>
<tr>
<td>Difference in response rates [95% CI]</td>
<td>34.97</td>
<td>[16.70, 53.24]</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

In the analysis of responders per improvement category at Week 16, a 45.2% higher response rate for at least moderate improvement (TIS ≥40 points; p < 0.0001) and a 23.6% higher response rate for at least major improvement (TIS ≥60 points; p < 0.0002) was observed in the IVIG group as compared to the placebo group. The mean (SD) TIS was significantly higher in IVIg group [48.4 (24.4)] than in placebo arm [21.6 (20.2)] at week 16 (Fig 1).

Figure 1.

After switching to IVIG in the Extension Period the placebo group attained a similar response rate at Week 40 as did the IVIG treated patients at Week 16, i.e approx. 70% for minimal improvement. In line with the overall primary endpoint, secondary end points including all of the sub-components of TIS except muscle enzyme (MMT-8, MD global, Extramuscular global, patient global, HAQ), also showed statistically significant improvement under IVIG treatment compared to placebo treatment.

The safety and tolerability profile of IVIG was consistent with previously reported safety outcomes for IVIG administration. Conclusion: This is the first large international phase III randomized, placebo-controlled trial demonstrating the efficacy and safety of IVIG as a treatment for patients with DM.

REFERENCES:

Acknowledgements: Acknowledgments to all participating investigators, centers and patients and their families

Disclosure of Interests: Roht Aggarwal Consultant of: Q22, Alexion, Argenx, AstraZeneca, SMS, Boehringer Ingelheim, Corbus, Cel Biolog, EMD Serono, Janssen, Kezar, Mallinckrodt, Kyverna, Octapharma, Orphazyme, Pfizer, Grant/research support from: SMS, Mallinckrodt, Pfizer, EMD Serono, Christina Charles-Schoeman Consultant of: Pfizer, Abbvie, Octapharma, Gilead, Regeneron-Sanofi, Grant/research support from: Bristol Myers Squibb, Abbvie, Octapharma, Joachim Schessl Speakers bureau: Octapharma, Grifols, CSL Behring, Consultant of: Octapharma, Zsuzsanna Bata-Csorgo Speakers bureau: Novartis, Sanofi-Genzyme, Ewopharma, Consultant of: Sanofi-Genzyme, Novartis, Ewopharma, Mazen Dimackie Consultant of: ArgenX, Cataly, Cello, CSL-Behring, Ecorftl, Kezar, Momenta, Nu-Factory, Octapharma, RaPharma/UCB, RMD Medical, Sanofi Genzyme, Shire Takeda, Spark Therapeutics and UCB Biopharma., Grant/research support from: Alexion, Alnylam Pharmaceuticals, Amicus, Biomarin, Bristol-Myers Squibb, Cataly, Corbu, CSL-Behring, Charles-Schoeman, CND Life Sciences, Consultant of: Grifols, Octapharma, Ro Pharma/UCB, Sanofi Genzyme, Sarepta Therapeutics, Shire Takeda, Spark Therapeutics, UCB Biopharma, Viromed/Hea-livmthl, Zoltán Griger Speakers bureau: Abbvie, CSL-Behring, Eli-Lilly, Roche, Boehringer Ingelheim, Consultant of: Octapharma, Sergey Moiseev: None declared, Chester V Oddis Consultant of: EMD Serono, Alexon Pharmaceuticals, Inc, Grant/research support from: Genentech (Clinical trial support); Bristol Myers Squibb (Clinical trial support), Elena Spioupi Consultant of: Octapharma, Grant/research support from: Octapharma, Janssen (Johnson & Johnson), BMS, Pfizer, Abbvie, Jiri Vencovský Speakers bureau: Abbvie, Biogen, MSD, Pfizer, Roche, Sanofi, UCB, Consultant of: Abbvie, Boehringer, Eli-Lilly, Roche, Octapharma, Recombinant Human Immunoglobulin E of: Octapharma, Todd Levine Shareholder of: Contingency Reference Labs, CND Life Sciences, Consultant of: Grifols, Octapharma, Alexion, Elisabeth Clodi Employee of: Octapharma PPG, Vienna Austria, and the ProDERM Investigators; None declared

DOI: 10.1136/annrheumdis-2021-eular.1389

OP0009-PARE SUCCESSFUL PATIENT EDUCATION ON COVID-19 VACCINE SAFETY IN A LARGE RHEUMATOLOGY COHORT USING INTERACTIVE MOBILE-PHONE VIDEO TECHNOLOGY: CONTEXT, RESULTS, AND NEXT STEPS

L. Rajapogala1, M. Ford1, M. Jasim1, D. Mulherin1, S. Venkatachalam1, T. Sheeran1, J. Bateman1.
1. The Rheumatology Centre, Cannock Wolverhampton, The Royal Wolverhampton NHS Trust, UK, Rheumatology, Wolverhampton, United Kingdom

Background: There are reported concerns of patient misunderstanding of the COVID-19 pandemic and vaccination safety. It is particularly important that these are understood in patients taking complex immunosuppressive therapies. Rapid delivery of targeted and up-to-date video messages from clinicians sent directly to patients could address patient uncertainty, and improve COVID-19 vaccination uptake. Innovative SMS (short message service) based video message has already shown promise in delivering COVID-19 information to patients. We present our experience in creating a tailored vaccine information video sent directly to our large cohort of patients in the UK with a range of rheumatic diseases and report on the learning points going forward.

Objectives: Our three objectives were: (1) educate our patients using an interactive mobile video information resource outlining the safety of the COVID vaccine in these patient groups; (2) better understand our patients’ views of the COVID-19 vaccine; (3) evaluate the patient experience of this approach.

Methods: We designed and recorded an 8-minute interactive web-based video delivered education resource designed for mobile phones. This included: aims of the video; details of licenced vaccines; UK vaccination schedule; frequently asked questions; links to national charity websites; our clinician recommendations; a rheumatologist being vaccinated; case studies; and summary data. We produced a simple mobile phone web-based evaluation of the resource, including anonymised patient demographics, their understanding of the safety of the vaccine pre/post video, and their user experience. Resource and evaluation were piloted by local healthcare professionals, our Patient Participation Group, a raileader; clarity; and appropriate small management. We then distributed to our follow-up patient cohort via our hospital SMS provider on 21.12.20, at the start of the roll-out of UK vaccines, containing a link to the resource and evaluation.

Results: Of a cohort of 10,981 patients, we had 8886 mobile phone numbers. At Day 14, we recorded 2358 video views (26.3%) and 664/2358 completed evaluations (28.1%). Only one person reported being unable to watch the video. Before watching the video, 348/664 patients (52.4%) were unsure if the vaccine was safe and/or recommended for them, rising to 320/664 (49.2%) post-video. Reasons for uncertainty after the video included drug allergy and fertility concerns. Following the video, 509/664 patients (76.6%) reported that they were more likely to have the vaccination. The majority of the patients (614/660, 93.0%)