Corticosteroid dosage could be decreased to 5 mg/day in 2 patients. One patient relapsed 13 months after anakinra introduction in the context of increasing the daily anakinra injection interval to every 48 hours. Three patients experienced transient injection-site reactions, and 1 patient had pneumonia.

Conclusion: Along with SPTPS, Halo Score successfully discriminates GCA from non GCA mimics. HS is effective in showing 3-month response and may be a useful marker to monitor GCA disease activity.

REFERENCES:

Disclosure of Interests: Alwin Sebastian: None declared, Alessandro Tomelleri: None declared, Abdul Kayani: None declared, Mohammad Tariq: None declared, Diana Prieto-Peña: None declared, Sue Inness: None declared, Jo Jackson: None declared, Alain Manrique: None declared, Jacques Monteil: None declared, Georges Liozon: None declared, Olivier Fauchais: None declared, Samuel Deshayes: None declared, Kim LY: None declared, Vinayak Anant: None declared, Alain Manrique: None declared, Jacques Monteil: None declared, Hubert de Boissyson Speakers bureau: Roche-Chugai. Grant/research support from: Roche-Chugai.

Disease course. Corticosteroid resistance was defined as persistent increased inflammatory parameters at month 3 despite a steroid dosage over 0.5 mg/day. Results: After a median duration of anakinra therapy of 19 (18–32) months, all 6 patients exhibited complete clinical and biological remission. Among the 4 patients with large-vessel involvement, 2 had a disappearance of aortitis under anakinra, and 2 showed a decrease in vascular uptake. After a median follow-up of 56 (48–63) months, corticosteroids were discontinued in 4 patients, and corticosteroid dosage could be decreased to 5 mg/day in 2 patients. One patient relapsed 13 months after anakinra introduction in the context of increasing the daily anakinra injection interval to every 48 hours. Three patients experienced transient injection-site reactions, and 1 patient had pneumonia.

Conclusion: In this short series, anakinra appears to be an efficient and safe steroid-sparing agent in refractory GCA, with a possible beneficial effect on large-vessel involvement.

REFERENCES:

Disclosure of Interests: Samuel Deshayes: None declared, Kim LY: None declared, Vincent Rieu: None declared, Gwénaëlle Maingé: None declared, Nicolas Martin Silva: None declared, Alain Manrique: None declared, Jacques Monteil: None declared, Hubert de Boysson Speakers bureau: Roche-Chugai. Grant/research support from: Roche-Chugai, Achille Aouba.

Disease course. Corticosteroid resistance was defined as ≥2 relapses or the combination of 2 of the following criteria: a daily dose of oral prednisone >20 mg/day (or 0.3 mg/kg) at 6 months; a daily dose of oral prednisone >10 mg/day (or 0.2 mg/kg) at 12 months; and/or a treatment maintained >24 months because of a relapsing disease course. Corticosteroid resistance was defined as persistent increased inflammatory parameters at month 3 despite a steroid dosage over 0.5 mg/kg. Results: After a median duration of anakinra therapy of 19 (18–32) months, all 6 patients exhibited complete clinical and biological remission. Among the 4 patients with large-vessel involvement, 2 had a disappearance of aortitis under anakinra, and 2 showed a decrease in vascular uptake. After a median follow-up of 56 (48–63) months, corticosteroids were discontinued in 4 patients, and corticosteroid dosage could be decreased to 5 mg/day in 2 patients. One patient relapsed 13 months after anakinra introduction in the context of increasing the daily anakinra injection interval to every 48 hours. Three patients experienced transient injection-site reactions, and 1 patient had pneumonia.

Conclusion: In this short series, anakinra appears to be an efficient and safe steroid-sparing agent in refractory GCA, with a possible beneficial effect on large-vessel involvement.

REFERENCES:

Disclosure of Interests: Samuel Deshayes: None declared, Kim LY: None declared, Vinayak Anant: None declared, Alain Manrique: None declared, Jacques Monteil: None declared, Hubert de Boysson Speakers bureau: Roche-Chugai. Grant/research support from: Roche-Chugai, Achille Aouba.
Clinical features including histology, block 2: laboratory and treatment factors, block 3: demographic and traditional risk factors). Variables included in the final multivariate model were selected on the following basis: P-value <0.1 in univariate or block regression or otherwise deemed clinically significant.

Results: 881 patients were included of which 626 (71.1%) were females. Mean age was 73 years (SD 9), 490 patients (55.6%) died during the study period (1 January 1972 – 31 December 2012). Characteristics and mortality for the GCA-cohort compared to matched controls have been published previously [3]. Within the GCA-cohort we found that presenting with visual disturbance (any) or scalp necrosis was associated with increased risk of death in univariate analysis (Figure 1). However, in multivariate analysis the traditional risk factors (age, smoking, hypertension and previous cardiovascular disease) were more strongly associated with risk of death. Among laboratory parameters only Hemoglobin (Hb) levels were significantly associated with risk of death with increasing Hb-levels indicating decreased risk. Neither temporal artery biopsy result nor initial or maximal (before first tapering) Prednisolone dose were found to be associated with risk of death. Results from univariate and the final multivariate models are presented in Figure 1.

Conclusion: In our large cohort of GCA-patients the risk of death was found to be predominantly predicted by age (HR 2.81) and traditional risk factors (smoking (HR 1.61), hypertension (HR 1.48) and previous cardiovascular disease (HR 1.26)). Visual disturbance (HR 1.40), visual loss in particular (HR 2.37), and scalp necrosis (HR 3.42) were found to be the clinical features most associated with risk of death. However, we note that our material lacked information about extra-cranial (large vessel) vasculitis, which may also carry increased risk of death.

REFERENCES:


POS0340

VASCULAR IMAGING IN PATIENTS WITH REFRACTORY TAKAYASU ARTERITIS TREATED WITH TOCILIZUMAB: ANALYSIS FROM A RANDOMIZED CONTROLLED TRIAL

Y. Nakaoka1,2, M. Yanagawa3, A. Hata1, K. Yamashita4, N. Okada5, S. Yamakido6, H. Hayashi7, D. Jayne8. 1National Cerebral and Cardiovascular Center Research Institute, Department of Vascular Physiology, Suita, Japan; 2Osaka University Graduate School of Medicine, Department of Cardiovascular Medicine, Osaka, Japan; 3Osaka University Graduate School of Medicine, Department of Future Diagnostic Radiology, Osaka, Japan; 4Chugai Pharmaceutical Co., Ltd., Medical Science Department, Medical Affairs Division, Tokyo, Japan; 5Chugai Pharmaceutical Co., Ltd., Biometrics Department, Clinical Development Division, Tokyo, Japan; 6Chugai Pharmaceutical Co., Ltd., Primary Clinical Development, Clinical Development Division, Tokyo, Japan; 7Nippon Medical School, Department of Radiology, Tokyo, Japan; 8University of Cambridge, Department of Medicine, Cambridge, United Kingdom

Background: Takayasu arteritis (TA) is a rare disease, its diagnosis is often delayed by years. Biomarkers might be helpful for earlier diagnosis and for monitoring treatment. We have described serum soluble vascular cell adhesion molecule-1 (sVCAM-1) as a marker of inflammation in a variety of rheumatic diseases, including vasculitis (1). Tocilizumab (TCZ) is a monoclonal antibody against the interleukin-6 receptor with established benefits in Takayasu arteritis (2). It may spare oral glucocorticoids (GC) and Disease-Modifying Agents (DMARDs). So far, sVCAM-1 has never been examined as diagnostic marker or to monitor disease activity in TA patients treated with TCZ.

POS0341

SV-CAM-1 EXPRESSION IN TAKAYASU ARTERITIS TREATED WITH TOCILIZUMAB: A PROSPECTIVE PILOT STUDY

S. Ackermann1, P. Villiger2, A. Glor3, K. K. Eriksson2, M. Seidel1. 1Hospital Biel, Rheumatology, Biel, Switzerland; 2Inselspital, Rheumatology, Bern, Switzerland; 3Stanford University, Immunology and Rheumatology, Stanford, United States of America

Background: Takayasu arteritis (TA) is a rare disease, its diagnosis is often delayed by years. Biomarkers might be helpful for earlier diagnosis and for monitoring treatment. We have described serum soluble vascular cell adhesion molecule-1 (sVCAM-1) as a marker of inflammation in a variety of rheumatic diseases, including vasculitis (1). Tocilizumab (TCZ) is a monoclonal antibody against the interleukin-6 receptor with established benefits in TA (2). It may spare oral glucocorticoids (GC) and Disease-Modifying Agents (DMARDs). So far, sVCAM-1 has never been examined as diagnostic marker or to monitor disease activity in TA patients treated with TCZ.