Method development

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Number & example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Radiology notes</td>
<td>a. Select note titles potentially relevant to IA
b. Extract notes with titles potentially related to IA
c. 35,141 note titles
d. 2,926,113 radiology notes</td>
</tr>
<tr>
<td>2</td>
<td>Possible meaningful terms</td>
<td>a. Compile list of root terms that may indicate erosion
b. Query radiology notes for root terms
c. Select possible terms
d. 11 root terms (i.e. eros*, pencil*, cup, ing*
e. 1,178 variations (i.e. erosion, term variations
f. 1179 possible terms (i.e. erosion, erode)</td>
</tr>
<tr>
<td>3</td>
<td>Annotation</td>
<td>a. Extract snippets containing possible meaningful terms
b. Classify snippets according to: Meaningful term, Relevance to joint, Attribution to IA, Affirmation
c. 5,000 snippets from radiology notes
d. 406,486 classifications with 1,017 snippets in rounds of 50-417 joint pair, 364 snippets for NLP training & testing</td>
</tr>
<tr>
<td>4</td>
<td>Rule development</td>
<td>a. Identify meaningful terms
b. Include erosive processes
c. Exclude processes not attributed to IA
d. 8,943 affirmation/ negation rules
e. 6 rules (pencil* cup, erosion, erode)</td>
</tr>
<tr>
<td>5</td>
<td>NLP training</td>
<td>a. Design & revise NLP model until accuracy ≥90%
b. 6 rounds, 817 snippets (AS 417, RA 200, PsA 200)</td>
</tr>
<tr>
<td>6</td>
<td>NLP testing</td>
<td>Test NLP model
a. 200 snippets (AS 100, RA 50, PsA 50)</td>
</tr>
<tr>
<td>7</td>
<td>Pt classification</td>
<td>a. Develop rules for classifying pts with discordant snippets
b. 30 IA pts (10 AS, 10 RA, 10 PsA)</td>
</tr>
<tr>
<td>8</td>
<td>NLP validation</td>
<td>a. Validate NLP model in reference sample at snippet level
b. 149 snippets (29 AS, 76 RA, 44 PsA)</td>
</tr>
<tr>
<td>9</td>
<td>Method validation</td>
<td>a. Validate methods (NLP+pt classification) at pt level
b. 30 IA pts (reference sample)</td>
</tr>
</tbody>
</table>

Results: In 168,667 veterans with IA, the mean age was 63.1 & 90.3% were male. Male development involved radiology note & erosion term selection, rule development, NLP model building, & method validation. The NLP model accuracy was 94.6% at the snippet level & 90.0% at the patient level, for all IA patients. Accuracy of methods.

Conclusion: The methods accurately identify erosions from radiology reports of veterans with IA. They may facilitate a broad range of research involving cohort identification & disease severity stratification.

REFERENCES:

Disclosure of Interests: Gopi Penmetsa: None declared, Shaobo Pei: None declared, Brian Sauer Grant/research support from: I have been an investigator on research contracts supported by Abbvie., Jessica A. Walsh Consultant of: Abbvie, Amgen, Janssen, Lilly, Novartis, Pfizer, UCB, Grant/research support from: Abbvie, Merck, Pfizer, Bingjian Feng Grant/research support from: Bing-Jian Feng reports funding and sponsorship to his institution on his behalf from Pfizer Inc., Regeneron Genetics Center LLC, and Astra Zeneca (UK). The PERCH software, for which Bing-Jian Feng is the inventor, has been non-exclusively licensed to Ambry Genetics for clinical genetic testing services and research. Jodi Walker Shareholder of: Abbvie and mutual funds containing various pharmaceutical companies, Employee of: Abbvie, Kevin Douglas Shareholder of: employed by Abbvie, Employee of: employed by Abbvie, Jerry Ciewolek Shareholder of: Own Abbvie Shares and mutual funds that hold pharmaceutical and other health care stocks, Employee of: I am current Abbvie Inc employee and past employee of Eli Lilly co

DOI: 10.1136/annrheumdis-2021-eular.1794

P00263 CLINICAL RELEVANCE OF DFS70 ANTIBODIES – A MULTICENTRE STUDY

Background: Anti-Dense Fine Speckled 70 (DFS70), also known as lens epithelium-derived growth factor (LEDGF) is a common finding when ANA are positive (1.7% in the whole population and 4.6% in the ANA-positive samples). DFS70 antibodies are rare in SARD, especially in the absence of clinical evidence or concomitant anti-extractable nuclear antigen (ENA) antibodies.

Objectives: Our study aimed to understand the meaning of anti-DFS70 antibodies and characterize the clinical and serological features of patients with anti-DFS70 positivity.

Methods: We performed a retrospective observational study of consecutive patients followed up at 9 Portuguese Rheumatology Centres observed from January 2016 until April 2020 with anti-DFS70 antibodies positivity. Descriptive statistics were presented as mean ± standard deviation if normally distributed or as median and interquartile range if non-normally distributed (continuous variables) or as absolute and relative frequencies (categorical variables). Sensitivity and specificity were calculated. Positive and negative predictive values were calculated between patients with and without SARD-specific autoantibodies. Associations between DFS70 with other disease-specific antibody and clinical manifestations were tested using Chi-Square or Fischer’s Exact Test, as appropriate.

Results: 120 patients were included, 99 (82.5%) were female with a mean age of 47.8 ± 18.2 years. 96.7% of the patients had ANA titer ≥1:160 (32.5% 1:160; 38.3% 1:320; 16.7% 1:640; 7.5% 1:1280 and 1.7% 1:2560) and 3.3% ANA <1:160. The main clinical reasons for ANA determination was arthralgia (44.2%), arthritis (11.6%) and Raynaud Phenomenon (RP) (10%). The main analytical reason (7.5%) was an elevation of inflammatory parameters (C-Reactive Protein (CRP) or Erythrocyte Sedimentation Rate (ESR). leukopenia (3.3%) and anemia (2.5%). Concerning the immunology: 58.3% of patients didn’t have an associated antibody. 9.2% had a positive rheumatoid factor, 5.8% positive ds-DNA, 4.2% histone and 3.3% SS-A. 26 patients had more than one associated antibody. 30% (25) patients were healthy; 43 (35.8%) patients had Systemic Autimmune Rheumatic Diseases (SARD) and 47 patients (39.2%) had other diseases (non-SARD). Among patients with a SARD, 16 patients presented an isolated positive anti-DFS70 and 27 patients had other antibodies associated. There was found a positive association with non-SARD and arthralgia (p=0.001) and SARD with arthritis (p=0.001). There was an association with SARD and raised inflammatory parameters (p=0.045), but no association was found with anemia (p=1.000) or leukopenia (p=0.131). Comparative analysis is described in Table 1, with chi-square or Fischer tests, as appropriated.

The sensitivity of isolated DFS70 was 70.1% and specificity was 62.8%. The positive predictive value was 77.1% and the negative predictive value was 54.0%.
Conclusion: We concluded that 64.2% of patients with positive DFS70 did not present a SARD and if we only consider patients with isolated anti-DFS70, 77.1% didn’t present a SARD. Therefore, in our study, 22.9% of the patients presented a SARD, which was associated with some clinical features like arthritis or raised inflammatory parameters (p<0.05). Although isolated anti-DFS70 are not specific of a particular condition, our study supports that it can be used as a negative predictor of SARD, if a correlation with clinical and laboratory features is made.

REFERENCES:

POS0264
THE EMERGING ROLE OF MAGNETIC RESONANCE IMAGING IN INTERSTITIAL LUNG DISEASE IN SYSTEMIC SCLEROSIS: EVIDENCE FOR ULTRA SHORT TE AND COMPRESSED SENSING VIBE ACQUISITIONS AS PROMISING TOOLS FOR THE EVALUATION OF PARENCHYMAL ALTERATIONS

N. Landini1, M. Orlandi2, M. Occhipinti3, C. Nardi4, L. Tofani5, S. Bellando-Randone6, C. Brunni7, M. Matucci-Cerinic8, G. Morana1, S. Colagrande3. 1Ca’ Foncello General Hospital, Department of Radiology, Reviso, Italy; 2University of Florence, Department of Experimental and Clinical Medicine, Florence, Italy; 3University of Florence-Azienda Ospedaliero-Universitaria Careggi, Department of Experimental and Clinical Biomedical Sciences, Florence, Italy.

Background: Interstitial lung disease (ILD) is a frequent complication and the major cause of death in Systemic sclerosis (SSc). Computed tomography (CT) is the gold standard imaging technique to assess ILD but is burdened by exposure to ionizing radiations that limits its use for the follow-up. MRI sequences with Ultra Short Echo Time (UTE) are promising for ILD.

Objectives: We tested two MRI sequences, UTE Spiral VIBE and Compressing Sensing (CS) VIBE, in SSc-ILD, in comparison to chest CT.

Methods: SSc patients with suspected-ascertained ILD were evaluated for undergoing CT-MRI examinations in the same day. Two radiologists visually scored the extent of ground glass opacities (GGO), reticulations, honeycombing and consolidations on CT-MRI. The sum of alteration was assumed as ILD extent. A quantitative texture analysis (qCT) was also performed on CT. Cohen’s k was adopted for interreader concordance in ILD detection. MRI sensitivity and specificity in ILD detection were evaluated. Lin’s concordance was adopted to compare extent analysis between readers and between CT (visual and qCT analysis) and MRI sequences.

Results: 54 patients performed both CT and MRI. MRI interreader concordance was moderate in ILD detection, while UTE and GGO extent analysis showed good or very good concordance. UTE Spiral VIBE had a sensitivity and specificity in ILD detection of 95.8% and 77.8%, while alterations extent analysis obtained a very good concordance with CT for ILD and GGO. CS VIBE showed a sensitivity and specificity in ILD detection of 46.7% and 95.0%, but a slight or fair concordance with CT in all alterations’ extent analysis.

Conclusion: MRI UTE Spiral VIBE sequences are helpful in the evaluation of SSc-ILD. Larger cohorts of patients will be needed to confirm that MRI may be useful in clinical practice, reducing the radiological load of chest CT.

REFERENCES:

Disclosure of Interests: None declared. DOI: 10.1136/annrheumdis-2021-eular.3253

POS0265
CLINICAL AND ULTRASONOGRAPHIC ENTHESITIS IN INFECTIVE BOWEL DISEASE WITH AND WITHOUT PSORIASIS

G. Citriniti1, A. Soriano1, E. Bertolini2, G. Sandri1, A. Bertani1, I. Tinazzi3, F. Martinis1, N. Girolimetto1, C. Salvanari1,2, M. Beltrami1, P. Macchioni1.

1AUSL-IRCCS Reggio Emilia, Rheumatology Department, Reggio Emilia, Italy; 2AUSL-IRCCS Reggio Emilia, Medicine department, IBD Unit, Reggio Emilia, Italy; 3Rheumatology Unit, University of Modena & Reggio Emilia, Department, Modena, Italy; 4University of Modena & Reggio Emilia, Gastroenterology Department, IBD Unit, Modena, Italy; 5Sacro Cuore Don Calabria Hospital, Negar, Verona, Italy, Rheumatology Unit, Negar, Italy

Background: Previous studies have reported an association between psoriasis (PsO) and inflammatory bowel disease (IBD). Coexistence of IBD and PsO has been associated with significant higher prevalence of enthesitis and dactylitis.

Objectives: To compare the prevalence of clinical and ultrasonographic peripheral enthesis abnormalities in a consecutive series of patients with IBD and psoriasis (PsO) as compared to a group of IBD patients without psoriasis (IBD).

Methods: One-hundred seventy-four IBD consecutive patients [36 PsO and 138 IBD, M/F 91/83, mean age 42.6±14.7 years, mean disease duration 110±12.3 months] entered the study. A complete clinical examination, including rheumatologic history, 66/68 peripheral joint count, MASES and LEI scores, BASDAI, and Crohn/UC prevalence was performed. Each patient underwent an abdominal US examination, evaluating power Doppler signal at knee examination (11.1% vs 2.2%, p=0.034). Higher values of MASES and LEI were observed in PsO patients (15.3±5.5 vs 10.9±4.9, p=0.017). The prevalence of enthesitis was defined according to OMERACT 3 and scored as 0-36 for MASES and 0-136 for LEI.

Results: PsO patients had later IBD onset (mean age 39±14.7 vs 33±13.2 in IBD group, p=0.02). There weren’t observed any significant differences in IBD duration and Crohn/UC prevalence.

No significant difference between the two groups in rheumatological history and clinical examination was detected, except for familiar history of psoriasis (PsO 44% vs IBD 16%, p<0.001). Prevalence of SpA was 33.3% in PsO group and 37% in IBD group (p=0.687)

Conclusions: PsO patients showed structural damage at ≥1 enthesis, 44 patients (25%) had at least 1 active enthesitis, with no significant difference between the two groups. PsO group showcased a significantly increased prevalence of patients having ≥1 thickened enthesis (86.1% vs 63.9%, p=0.009) and of PD signal at knee examination (11.1% vs 2.2%, p=0.034). Higher values of GUESS score were observed in PsO (8.1±5.1 vs 5.8±3.9, p=0.017). Enthesitis hyperoecogenicity was more prevalent in IBD group (27.5% vs 11.1%, p=0.049).

REFERENCES:

Disclosure of Interests: None declared. DOI: 10.1136/annrheumdis-2021-eular.3253