Conclusion: Patients developing SLE before age 28 with raised interferon scores may be forecast to develop severe disease, fail oral therapies, and require rituximab. While this retrospective analysis may be confounded by a survivorship bias, our findings are consistent with other literature on these variables as predictors of severe disease. Future work will analyse more biomarkers in a larger and more varied patient population.

REFERENCES:

Disclosure of Interests: None declared.

Discrimination of Interests: None declared.

DOI: 10.1136/annrheumdis-2021-eular.2266

POS0176 COMBINING CXC5 WITH CONVENTIONAL THERAPY PROVIDES DURABLE IMMUNOSUPPRESSION IN MURINE LUPUS NEPHRITIS

X. Fan1,2, D. Guo1, F. Lim1, J. Thumboo2, W. Hwang3,4, C. T. Ng3, A. Low2.
1Singapore General Hospital, Department of Clinical Translational Research, Singapore, Singapore; 2Duke-NUS Medical School, SingHealth Duke-NUS Medicine Academic Clinical Programme, Singapore, Singapore; 3Singapore General Hospital, Department of Rheumatology and Immunology, Singapore, Singapore; 4National Cancer Centre, - Singapore, Singapore;
2Singapore General Hospital, Department of Haematology, Singapore, Singapore

Background: Lupus nephritis (LN) is a condition arising from abnormal immune responses to internal organs. Patients with LN suffer from severe morbidity and mortality. Despite the aggressive regimen, 20-40% of patients do not respond to current conventional therapy. CXC5, as a potent chemoattractant and activator of neutrophils, demonstrates strong immunosuppression in the pre-clinical mouse model of graft versus host disease (GvHD) and lupus nephritis (LN) by intravenous administration.

Objectives: In this study, we aim to evaluate whether the therapeutic effect of conventional therapy could be further improved by combination therapy with CXC5.

Methods: Ten doses of exogenous CXC5 (5ug/kg, biweekly) together with conventional therapy (methylprednisolone (MP), intravenous (IV) injection with 8.3mg/kg/day at day-1, day-2 and day-3) + cyclophosphamide (CP, IV injection with 0.5g/BSA at day-4, monthly for 5 doses)) were administered to 8-week-old Faslpr mice by IV injection. Mice were monitored for 64 weeks. Splenic immune profile at 3 weeks post treatment (PT) was measured by flow cytometry. Circulating cytokine profile were detected by Luminex technology. The renal profile was assessed by urinary spot albumin:creatinine ratio. In situ renal immune cell infiltration and complement 3 deposition were detected by Haematoxylin and Eosin (H&E) and immunohistochemistry staining.

Results: Comparing to control mice (pPBS: 0% at 28 weeks PT), mice survival was improved to 100% at 40 weeks PT and 55.6% at 64 weeks PT by combination therapy of CXC5 and conventional therapy (MP + CP) (p=0.0001). The accumulation of autoantibody (anti-dsDNA) and proteinuria were reduced 61.2-fold at 32 weeks PT (p=0.004) and 83.5-fold at 28 weeks PT (p=0.03) respectively. Both autoantibody and proteinuria were maintained at low level at 64 weeks. The classification of LN was significantly reduced at 10 weeks PT and equivalent to the classes we observed in pre-onset mice (p=0.004). Although combination therapy was not able to promote Tregs, it reduced both innate (neutrophils and macrophages) and adaptive (T_h1, T_h2 and T_h17 cells and B cells) immunities significantly. Concomitantly, the serum level of endogenous CXC5 was boosted up by exogenous administration from 74.2 ± 39.3 pg/ml to 254.1 ± 147.1 pg/ml at 8 weeks PT (p=0.05) and this relative high concentration was maintained for 48 weeks.

Conclusion: Combining CXC5 with conventional therapy provides effective and durable immunosuppression in murine LN and it may provide a new option for LN therapy.

REFERENCES:

POS0177 POTENTIAL INVOLVEMENT OF IL-40 AND IL-40-PRODUCING CELLS IN PRIMARY SJOGREN’S SYNDROME (+SS) AND +SS-ASSOCIATED LYMPHOMA

C. Pizzio1, M. Lo Pizzo2, L. Mohammadnejhad3, V. L. Lentinii4, D. Di Liberto5, G. Grasso1, P. Russo6, R. Giacomelli1, F. Ciccia1, G. Guggino1.
1“P Giaccone” University Hospital, University of Palermo, Department of Hematology, Mothers and Child Care, Internal Medicine and Medical Specialities, Rheumatology Unit, Palermo, Italy; 2“P Giaccone” University Hospital, University of Palermo, Biomedicine, Neurosciences and Advanced Diagnostic, Palermo, Italy; 3Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Pathology Unit, Palermo, Italy; 4“San Salvatore” University Hospital, Department of Biotechnological and Applied Clinical Science, Uckilia, Italy; 5University “Campus Bio-Medico”, Unit of Allergology, Immunology, Rheumatology, Department of Medicine, Rome, Italy; 6University of Campania “Luigi Vanvitelli”, Department of Precision Medicine, Napoli, Italy

Background: The pathogenesis of pSS relies on a complex interplay between both innate and adaptive immune responses in which B cells play a pivotal role. Their chronic aberrant hyperactivation may drive clonal escape and consequent lymphomagenesis [1]. In the last few years, B cells have emerged as potential effector cells, able to release a wide range of cytokines that actively contribute to shape the microenvironment they act in. Recently, IL-40, a novel B cell associated cytokine encoded by an uncharacterized gene (C17orf99; chromosome 17 open reading frame 99) was described. Naïve B cells can express IL-40 at both tissue and peripheral level and the stimulation of B cells with IL-4 and TGF-β significantly increases IL-40 release. In addition, human B cells lymphomas are able to constitutively produce IL-40 [2]. Taking into account this emerging evidence and considering the well-known role of IL-4 and TGF-β in pSS pathogenesis, as well as the association with lymphomas, we decided to focus our attention on IL-40 in pSS patients.

Objectives: The aim of the present study was to investigate IL-40 expression in the salivary glands of patients affected by pSS and pSS-associated non-Hodgkin’s lymphoma (NHL).

Methods: Minor salivary gland biopsies were obtained from 22 patients with a previous diagnosis of pSS-associated NHL (n=10) were selected from the biopsy bank of the Pathology Unit of the Ospedale Cervello (Palermo, Italy). Quantitative gene expression analysis by TaqMan real-time PCR and immunohistochemistry (IHC) for IL-40, IL-4, TGF-β1 was performed on salivary glands from patients and controls. The cellular sources of IL-40 among infiltrating inflammatory cells were determined by fluorescence-activated cell sorting (FACS) analysis and immunofluorescence (IF). Serum IL-40 levels were measured by ELISA in both patients (n=10) and controls (n=9).

Results: IL-40 was significantly increased at both protein and mRNA level in the inflamed salivary glands of patients with pSS where a positive strong correlation between the IL-40 mRNA levels and the focus score (FS) was evidenced. The expression of IL-40 in parotid glands of pSS-Associated NHL was also markedly increased (Figure 1). IL-40 expression correlated with the presence of IL-4 and TGF-β1; both cytokines were significantly increased in pSS at mRNA and protein level. Among infiltrating immune cells, CD19+ B cells resulted the major source of IL-40. However, we identified CD4+, CD8+ T cells and CD68+ macrophages as additional producers of IL-40 in both FACS and IF analysis. The ELISA test also showed a significant increase of serum IL-40 concentration in pSS patients (p value = 0.0190), compared to controls.

Conclusion: Our preliminary results suggest that IL-40 may play a role in the pathogenesis of pSS and pSS-associated NHL. To the best of our knowledge, this is the first demonstration of the overexpression of this cytokine in salivary gland tissue and sera in pSS. Moreover, we demonstrated that IL-40 is produced by several cellular types, such as T cells and macrophages, and is not exclusively released by B cells. Further studies are necessary to clarify IL-40 pathways and functions in order to unravel IL-40 possible role in pSS development.