Rheumatoid arthritis - non biologic treatment and small molecules - PART 1

POS0086

ANALYSIS OF DISEASE ACTIVITY MEASURES IN THE CONTEXT OF A METHOTREXATE WITHDRAWAL STUDY AMONG PATIENTS WITH RHEUMATOID ARTHRITIS TREATED WITH TOFACITINIB 11 MG ONCE DAILY + METHOTREXATE: POST HOC ANALYSIS OF DATA FROM ORAL SHIFT

R. Fleischmann, B. Harauzi, M. H. Buch, D. G. Gold, G. Sawyer, H. Shi, A. Diehl, K. Lee, Metropolex Clinical Research Center and University of Texas Southwestern Medical Center, Department of Medicine, Dallas, TX, United States of America; 2Institut de Rhumatologie de Montréal, Montreal, QC, Canada; 3School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester Centre for Musculoskeletal Research, Manchester, United Kingdom; 4NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; 5Pfizer Inc, Inflammation and Immunology, Montreal, QC, Canada; 6Pfizer Inc, Inflammation and Immunology, New York, NY, United States of America; 7Pfizer Inc, Inflammation and Immunology, Collegeville, PA, United States of America

Background: The Phase 3x4 study ORAL Shift demonstrated sustained efficacy and safety of tofacitinib modified-release (MR) 11 mg once daily (QD) following methotrexate (MTX) withdrawal that was non-inferior to continued tofacitinib + MTX use (per DAS28-4(ESR)), in patients (pts) with rheumatoid arthritis (RA) who achieved CDAI-defined low disease activity (LDA) with tofacitinib + MTX at Week (Wk) 24.2

Objectives: To assess the performance of alternative disease activity measures at W24 (randomisation) and W48 (study endpoint) in ORAL Shift.

Methods: ORAL Shift (NCT02831855) enrolled pts aged ≥18 years with moderate to severe RA and an inadequate response to MTX. Pts received open-label tofacitinib MR 11 mg QD + MTX for 24 weeks. Achievement of CDAI LDA (≤10) at W24 was set as the criteria for entry to the 24-week double-blind MTX withdrawal phase, with pts randomised 1:1 to receive tofacitinib MR 11 mg QD + placebo (PBO) (ie blinded MTX withdrawal) or continue tofacitinib + MTX. In this post hoc analysis, efficacy analyses were performed in 8 subgroups defined by achievement of various disease activity criteria at W24: DAS28-4(ESR) remission (≤2.6) or LDA (≤3.2); DAS28-4(CRP) <2.6 or ≤3.2; RAPID3 remission (≤3) or LDA (≤6); CDAI remission (≤3.2); DAS28-4(ESR) and DAS28-4(CRP) was also calculated in each subgroup. For each subgroup, the proportion of pts who achieved the corresponding disease activity criterion at W48 was calculated, with a 95% confidence interval (CI) estimated using the normal approximation to the binomial distribution. The change (Δ) from W4 to W48 in least squares (LS) mean DAS28-4(ESR) and DAS28-4(CRP) was also calculated in each subgroup, with a 95% CI for the difference between treatment groups estimated using a mixed model with repeated measures. Nominal p values were calculated and are presented with no formal statistical hypothesis testing formulated.

Results: Overall, 694 pts entered the open-label phase of ORAL Shift, and 530 were randomised and received treatment in the double-blind phase; 264 and 266 pts received tofacitinib + PBO and tofacitinib + MTX, respectively (Figure 1a). Considering those pts who were randomised and treated, the proportion of pts achieving each disease activity criterion at W24 varied, but was similar between treatments within each subgroup (Figure 1a). Among pts who met each disease activity criterion at W24, generally, the majority of pts in both treatment groups also met the same criterion at W48 (Figure 1b). Numerically more pts receiving tofacitinib + MTX vs tofacitinib + PBO continued to meet the corresponding criterion at W48. Regardless of the disease activity criterion met at W24, differences between treatment groups in LS mean ΔDAS28-4(ESR) (Figure 1c) and ΔDAS28-4(CRP) (data not shown) from W24 to W48 favoured tofacitinib + MTX vs tofacitinib + PBO.

Conclusion: This post hoc analysis of data from pts randomised and treated in ORAL Shift demonstrated that, regardless of the disease activity state criterion met at W24, generally a majority of pts receiving tofacitinib maintained achievement of the corresponding activity criterion at W48, with or without continued MTX. Differences between treatment groups in LS mean ΔDAS28-4(ESR) from W24 to W48, as defined by achievement of LDA or remission with a variety of disease activity measures, were less than a change of 1.2, which is considered to be the threshold for a minimal clinically important improvement.3

REFERENCES:

Acknowledgements: Study sponsored by Pfizer Inc. Medical writing support was provided by Gemma Turner, CMC Connect, and funded by Pfizer Inc.

POS0087

LONG-TERM SAFETY AND EFFICACY OF UPADACITINIB OR ADALimumab IN PATIENTS WITH RHEUMATOID ARTHRITIS: RESULTS AT 3 YEARS FROM THE SELECT-COMPARE STUDY

R. Fleischmann, E. Mylser, L. Bessette, C. Peterfy, P. Duréz, Y. Tanaka, J. Swierzkot, N. Khan, X. Bu, Y. Li, I. H. Song, 1Univ of Texas Southwestern Med Center, Metropolex Clinical Research Center, Dallas, United States of America; 2Organización Medica de Investigacion, Rheumatology, Buenos Aires, Argentina; 3Laval University, Rheumatology, Quebec, Canada; 4Spine Sciences Inc, Boca Raton, United States of America; 5Institut de Recherche Expérimentale et Clinique, UCL Saint-Luc, Pôle de Recherche en Réumatologie, Brussels, Belgium; 6University of Occupational and Environmental Health, The First Department of Internal Medicine, Kitakyushu, Japan; 7Wroclaw Medical University, Department of Rheumatology and Internal Medicine, Wroclaw, Poland; 8AbbVie, Immunology, North Chicago, United States of America

Background: In the SELECT-COMPARE study, the Janus kinase inhibitor, upadacitinib (UPA), demonstrated significant improvements in the signs and symptoms of rheumatoid arthritis (RA) when administered at 15 mg once daily (QD) on background methotrexate (MTX) compared with adalimumab (ADA) plus MTX at Week 12 that were maintained through 72 weeks in patients with prior inadequate response to MTX.1

Objectives: To assess the long-term safety and efficacy of UPA vs ADA over 3 years in the ongoing long-term extension (LTE).

Methods: Patients receiving background MTX were randomized 2:2:1 to UPA 15 mg QD, placebo (PBO), or ADA 40 mg every other week. Between Weeks 14-26, rescue was mandated for either lack of response (<20% improvement in tender or swollen joint counts; Weeks 14, 18, 22) or failure to achieve a targeted disease outcome (CDAI low disease activity; Week 26). Patients who completed the 48-week double-blind period could enter an LTE for up to 10 years total. This analysis describes patients through 3 years of treatment. Treatment-emergent adverse events (TEAEs) per 100 patient years (PY), including serious adverse events (SAEs), were summarized up to 3 years based on exposure to UPA and to ADA. Efficacy was analyzed by original randomized groups. Patients who were rescued or prematurely discontinued study drug were categorized as non-responders for visits after rescue or discontinuation. Descriptive analyses were performed without formal statistical comparisons.

Results: In total, 651, 652, and 327 pts were randomized at baseline to receive UPA, PBO, and ADA, respectively. Between Weeks 14-26, 252 (39%) patients were rescued from UPA to ADA, 159 (49%) were rescued from ADA to UPA, and all PBO patients were switched to UPA by Week 26.2 A higher proportion of patients randomized to UPA completed 3 years without rescue compared to those randomized to ADA (47% vs 36%, respectively). UPA was generally well-tolerated as assessed by the rates of TEAEs, including serious AEs, AEs leading to discontinuation of study drug, and AEsIs, including serious and opportunistic infections, malignancies, adjudicated major adverse cardiac events or venous thromboembolism; Figure 1). Consistent with previous analyses, the event rates of AEsIs were generally comparable between the UPA and
ADA groups, while herpes zoster, lymphopenia, hepatic disorder, and CPK elevation were reported at higher rates with UPA. Consistent with earlier time points, greater proportions of patients randomized to UPA achieved disease activity and remission at 3 years (CDAI) as well as DAS28(CRP) ≤3.2 or ≤2.6 compared with patients randomized to ADA (Table 1).

Conclusion: The safety profile of UPA was consistent with the results reported previously and with the integrated Phase 3 safety analysis.2,3 Higher levels of clinical response continued to be observed with UPA vs ADA through 3 years of treatment.

REFERENCES:

Table 1. Efficacy Endpoints at 3 Years (NRI)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>ADA 15 mg QD</th>
<th>P<0.001</th>
<th>ADA 40 mg EOW</th>
<th>P<0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDASI ≤10</td>
<td>39 (36.4)</td>
<td>29 (34)</td>
<td>37 (33.7)</td>
<td>29 (39)</td>
</tr>
<tr>
<td>CDASI ≤2.8</td>
<td>24 (21.8)</td>
<td>17 (12.2)</td>
<td>26 (21.3)</td>
<td>22 (17.6)</td>
</tr>
<tr>
<td>DAS28(CRP) ≤3.2</td>
<td>37 (33.7)</td>
<td>29 (39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAS28(CRP) ≤2.6</td>
<td>24 (21.3)</td>
<td>17 (12.2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADAmaintain AE: adverse event; CI: confidence interval; CRP, C-reactive protein; DAS28, Disease Activity Score for 28 joints; CDASI, Clinical Disease Activity Score; EOW, every other week; NRI, non-responder imputation; QD, once daily; UPA, upadacitinib. *Patients who were rescued from non-responder imputation; QD, once daily; UPA, upadacitinib.

Disclosure of Interests: AbbVie and the authors thank the patients, trial sites, and investigators who participated in this clinical trial. AbbVie, Inc was the trial sponsor, contributed to trial design, data collection, analysis & interpretation, and to writing, reviewing, and approval of final version. No honoraria or payments were made for authorship. The authors thank Dr. Tim Shaw of AbbVie Inc. for his support with the interpretation of the data. Medical writing support was provided by Ramona Vladea, PhD, of AbbVie, Inc.

Acknowledgements: AbbVie and the authors thank the patients, trial sites, and investigators who participated in this clinical trial. AbbVie, Inc was the trial sponsor, contributed to trial design, data collection, analysis & interpretation, and to writing, reviewing, and approval of final version. No honoraria or payments were made for authorship. The authors thank Dr. Tim Shaw of AbbVie Inc. for his support with the interpretation of the data. Medical writing support was provided by Ramona Vladea, PhD, of AbbVie, Inc.

Disclosure of Interests: Roy Fleischmann Consultant of: AbbVie, Amgen, Bristol-Myers Squibb, Lilly, GSK, Janssen, Novartis, Pfizer Inc, Sanofi-Aventis, and UCB; Grant/research support from: AbbVie, Amgen, Boehringer Ingelheim, Bristol-Myers Squibb, Celgene, Eli Lilly, Genentech, Janssen, Novartis, Pfizer Inc, Regeneron, Roche, Sanofi-Aventis and UCB; Eduardo Myiler Consultant of: AbbVie, AstraZeneca, Lilly, Pfizer, Roche, BMS, Sanofiz, GSK, Janssen, Grant/research support from: AbbVie, AstraZeneca, Lilly, Pfizer, Roche, BMS, Sanofiz, GSK, Janssen, Louis Bessette Consultant of: Amgen, BMS, Janssen, Roche, UCB, AbbVie, Pfizer, Merck, Celgene, Sanofi, Eli Lilly, Novartis, Gilead; Grant/research support from: Amgen, BMS, Janssen, Roche, UCB, AbbVie, Pfizer, Merck, Celgene, Sanofi, Eli Lilly, Novartis, Gilead; supporter of: Spire Sciences, Inc, Speakers bureau: Amgen, Bristol-Myers Squibb, Consultant of: Aeras, Centrexion, Daiichi Sankyo, EMD, Serono, Five Prime, Flexion Therapeutics, Genentech, GlaxoSmithKline, Iresso, Eli Lilly, Myriad Genetics, Novartis, Roche, SetPoint, Sorrento, UCB, Employee of: Spire Sciences, Inc, Patrick Dureez Speakers bureau: BMS, Sanofi, Eli Lilly, Celltion, Yoshia Tanaka Speakers bureau: Daiichi-Sankyo, Astellas, Chugai, Eli Lilly, Pfizer, AbbVie, YL Biologicals, Bristol-Myers, Takeda, Mitsubishi-Tanabe, Novartis, Eisai, Janssen, Teijin, Consultant of: Daiichi-Sankyo, Astellas, Chugai, Eli Lilly, Pfizer, AbbVie, YL Biologicals, Bristol-Myers, Takeda, Mitsubishi-Tanabe, Novartis, Eisai, Janssen, Teijin, Grant/research support from: Asahi-kasei, Mitsubishi-Tanabe, Chugai, Takeda, Sanofi, Eli Lilly, Pfizer, Roche, BMS, UCSB, MSD, Accord, Janssen, Consultant of: AbbVie, Sanofiz, Pfizer, Roche, BMS, UCSB, MSD, Accord, Janssen, Grant/research support from: AbbVie, Sanofi, Pfizer, Roche, BMS, UCSB, MSD, Accord, Pfizer, Roche, BR, UCB, AbbVie, Pfizer, AbbVie, Employee of: AbbVie, Xianwei Bu Shareholder of: AbbVie, Employee of: AbbVie, Yihan Li Shareholder of: AbbVie, Employee of: AbbVie, In-Ho Song Shareholder of: AbbVie, Employee of: AbbVie, DOI: 10.1136/annrheumdis-2021-eular.535

POS0088 EFFICACY OF JANUS KINASE INHIBITORS FOR DIFFICULT-TO-TREAT RA IN CLINICAL PRACTICE

M. Kamiya, T. Ogawa, S. Morii, K. Yamazaki. 1. Nara Hospital, Kindai University, Orthopaedic Surgery and Rheumatology, Ikoma City, Japan

Background: In 20-30% of rheumatoid arthritis (RA) patients, the first biologic disease-modifying antirheumatic drugs (bDMARDs) (generally tumour necrosis factor inhibitors (TNFis)) is ineffectual, and among the patients who do respond to therapy, 20% is faced with secondary ineffectiveness within the first 2 years of treatment [1]. In practice, when refractory RA is present, of which the definition implies previous use of at least two bDMARDs (generally TNFis), the next treatment choice often made is a bDMARD of another class (non-TNFis) [2]. On the other hand, patients who are inadequately responding to bDMARDs need new treatment options because subsequent bDMARD treatment reduces their response [3]. Janus Kinase inhibitors (JAKis) are the first targeted synthetic bDMARDs (bDMARDs) licenced for the treatment of RA with comparable efficacy to bDMARDs. Unlike the single cytokine targeting approach of bDMARDs, JAKis are specifically designed to inhibit intracellular signalling molecules common to the receptors of multiple inflammatory cytokines implicated in RA pathogenesis.

Objectives: Difficult-to-treat (D2T) RA is defined as refractory to two or more bi/Ts DMARDs with different mechanisms of action, with active and progressive disease, as published by Eular(4). We evaluated real world efficacy of approved JAKis and factors that may help to continue them in patients with D2T RA.

Methods: Patients who had inadequate response to two or more bDMARDs (including both TNFis and non-TNFis) at our hospital by December 2019 were defined as D2T RA, and patients who switched to JAKis were retrospectively investigated. The drug retention rate was determined by Kaplan-Meier method, and the difference was tested by Logrank test. Multiple regression analysis was used as the statistical method to predict continuation of JAKis for more than 1 year with patient background (age, gender, during the disease, number of bDMARDs used, with or without methotrexate and/or glucocorticoids, disease activity score assessing 28 joints using erythrocyte sedimentation rate presence of rheumatoid factor/anti-CCP antibody, matrix metalloproteinase 3 value. Health Assessment Questionnaire disability index at the time of initiation as an explanatory variable.

Results: A total of 915 bDMARDs had been administered to 394 RA patients. The retention rate of bDMARDs and the number of bDMARDs used were 89.3% and 1.48 bDMARDs at 1 year, 67.7% and 2.27 bDMARDs at 5 years, and 52.0% and 3.15 bDMARDs at 10 years, respectively. The retention rate of JAKis at 1 year was 60.2% in 65 patients with tofacitinib (TOF) and 67.2% in 70 patients with baricitinib (BAR) (P=0.38). Among them, the drug retention rate in D2T RA, regardless of patient background such as disease activity or number of b/Ts DMARDs used. Other JAKis and switches between JAKis need to be investigated. The drug retention rate was determined by Kaplan-Meier method, on the other hand, patients who are inadequately responding to bDMARDs need new treatment options because subsequent bDMARD treatment reduces their response [3]. Janus Kinase inhibitors (JAKis) are the first targeted synthetic bDMARDs (bDMARDs) licensed for the treatment of RA with comparable efficacy to bDMARDs. Unlike the single cytokine targeting approach of bDMARDs, JAKis are specifically designed to inhibit intracellular signalling molecules common to the receptors of multiple inflammatory cytokines implicated in RA pathogenesis.

REFERENCES: