weeks later. STP938 was administered to mice developing signs of arthritis from Day 28 to 45 orally daily b.i.d.

Results: STP938 inhibited in vitro proliferation of HEK

Results: STP938 inhibited in vitro proliferation of HEK, but not HEK-CTPS1₁ cells as well as Jurkat and human PBMCs. STP938 demonstrated a significant and dose-dependent inhibition of KLH-specific T and B cell responses in vivo. STP938 significantly reduced the disease severity in the CIA model in a dose-dependent manner as determined by clinical and histopathological readouts.

Conclusion: Our preliminary in vitro and in vivo results indicate that inhibition of CTPS1 specifically blocks proliferation of cells derived from the lymphocyte lineage and reestablishes cell driven inflammatory response. These data highlight the therapeutic potential of STP938 in treating patients with autoimmune diseases such as rheumatoid arthritis.

REFERENCES:

[Disclosure of Interests: Hélène AAS and FL Employee of: StePharma, Andrew Novak: None declared, Louise Birch Shareholder of: StePharma, Rebecca Lane: None declared, Norbert Minet Employee of: employee as Ph D student under CIFRE grant, David Laughton: None declared, Pascal George Shareholder of: StePharma, Geoffroy de Ribais Shareholder of: as former employee of StePharma, Employee of: former employee of StePharma, Sylvain Latour: None declared, Alain Fischer: None declared, Tim Bourne Shareholder of: UCB, StePharma, Sytrix Therapeutics, Consultant of: a range of biotech companies, Employee of: former employee of StePharma and Sytrix Therapeutics, Andrew Parker Employee of: Ste Pharma

DOI: 10.1136/annrheumdis-2021-eular.148

OPO036

IL-6 ACTIVATES YES-ASSOCIATED PROTEIN (YAP) IN FIBROBLASTS AND INDUCES YAP-SNAIL COMPLEX FORMATION TO DRIVE SYNOVIAL LINING PATHOLOGY IN INFLAMMATORY ARTHRITIS

R. Symons, F. Colella, F. Collins, A. R. Roeofls, C. De Bari

Arthritis and Regenerative Medicine Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom

Background: In rheumatoid arthritis (RA), the fibroblast-like synoviocytes (FLS) in synovial lining become invasive and cause joint destruction. The molecular mechanisms underpinning this pathogenic FLS phenotype are incompletely understood. The FLS descend from Growth differentiation factor 5 (Gdf5)-expressing joint interzone cells in the embryo, and we showed that conditional ablation of the transcriptional co-activator Yes-associated protein (Yap) in Gdf5-lineage cells prevents synovial hyperplasia after traumatic cartilage injury in mice.

Objectives: Here, we investigated a potential role for Yap in pathogenic FLS in immune-mediated inflammatory arthritis.

Methods: Immunochemistry was used to detect Yap in human RA synovium and Yap, Snail and Ctgf in mouse synovium following antigen-induced arthritis (AIA). To determine the effect of Yap knockout (KO) in synovial stromal cells, AIA was induced in Gdf5-Cre;ldTomato;Yap^{fl/fl} (Yap cKO) and Gdf5-Cre;ldTomato;Yap^{Wt/Wt} (control) mice, or in Pdgfrα-Cre;Esr1_{yap}-Fas₂ (control) mice, or in Pdgfrα-Cre;Esr1_{yap}-Fas₂ (control) mice after adult tamoxifen induction. Yap KO in both models was confirmed by immunohistochemistry. After nine days, arthritis severity was determined by histological scoring of synovial lining hyperplasia, immune infiltrates, cellular exudate, and marginal erosions. tdTomato-v Gdf5-lineage cells in synovium were quantified. In vitro, Yap reporter cells were treated with inflammatory cytokines to evaluate their ability to stimulate Yap-induced GFP expression by flow cytometry. Snail over-expression, siRNA-mediated Yap knockdown, and IL-6/IL-6R stimulation were performed on normal mouse FLS, AIA-FLS or human RA-FLS, and cell invasion through a matrigel-coated transwell was quantified. A proximity ligation assay was utilised to detect Yap/Snail complex formation.

Results: Average expression levels of Yap (p<0.001), its transcription factor partner Snail (p<0.002), and their downstream target Ctgf (p<0.0003), were increased in mouse synovium after AIA (n=5), and Yap was highly expressed by FLS in human RA synovium. Yap cKO mice (n=24) showed a significantly decreased arthritis severity (p<0.002) after AIA compared to controls (n=22), with significant reductions in synovial lining hyperplasia (p<0.001), synovial immune cell infiltrates (p<0.026) and marginal erosions (p<0.002). Similarly, Yap cKO mice (n=6) showed a significant decrease in arthritis score (p<0.039) after AIA compared to controls (n=9). However, both control mice (p<0.001) and Yap cKO mice (p<0.001) showed an extensive expansion of tdTomato- Gdf5-lineage synovial cells after AIA, with no significant difference between control and Yap cKO mice. In vitro, Yap knockdown prevented IL-6/IL-6R-induced invasion of normal mouse FLS (p<0.037) and human RA-FLS (p<0.005). Using Yap reporter cells, we found that Yap was activated by IL-6/IL-6R (p<0.016), but not TNFα or IL-1β. Finally, IL-6/IL-6R treatment of normal mouse FLS (p<0.033) or human RA-FLS (p<0.036) induced Yap-Snail complex formation, and Yap knockdown prevented FLS invasion induced by Snail overexpression (p<0.027).

Conclusion: These data demonstrate that via activation by IL-6, and co-operation with the transcription factor partner Snail, Yap acts as a key modulator of the invasive and destructive phenotype of FLS in inflammatory arthritis. Therapeutic targeting of Yap could reduce joint destruction in RA.

REFERENCES:

Acknowledgements: This work was funded by the Medical Research Council (MR/L020211/1 and MR/L022893/1) and Versus Arthritis (20775 and 21156).

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.2842

OP0035

ASSESSMENT OF THE INTESTINAL PENETRABILITY IN PATIENTS WITH RHEUMATOID ARTHRITIS USING COLONIC TISSUES AND SERA

R. Audo, S. Sanchez, J. Meille, L. Macia, B. Ribiere, C. Lukas, B. Combe, J. Morel, C. Daïen, C. Montpellier, Department of Rheumatology, Montpellier, France; UMR5535, IGMM, Montpellier, France; 3University of Sydney, Charles Perkins Center, Montpellier, France; 4CHU Montpellier, Laboratoire d’Anatomie et de Cytologie Pathologiques, Montpellier, France

Background: Patients with rheumatoid arthritis (RA) have an altered gut microbiota through food or probiotics could enhance the effect of treatment by limiting this amplification loop of inflammation.

Objectives: In the present study, we evaluate the intestinal permeability in RA patients by analyzing tight junctions in colonic biopsies and serum markers.

Methods: Colonic biopsies from 20 RA patients who underwent colonoscopy for screening with normal histology were compared with those from 20 age and sex matched controls. ZO-1, occludin and claudin 2 junction proteins were evaluated by immunohistochemistry. The staining intensity was assessed by two blinded independent readers. The serum concentrations of LPS-binding protein (LBP), CD14s and zonulin were evaluated by ELISA in 25 patients naive of DMARDs, 41 patients before and after introduction of a DMARDs and 21 controls. Elevation of zonulin in serum indicates an increase in intestinal permeability while LBP and CD14s indicate bacterial translocation.

Results: ZO-1 expression was significantly lower in biopsies from patients with RA than controls (mean score ± SD of 1.6 ± 0.56 vs 2.0 ± 0.43; p = 0.01).

Age, sex, disease duration and immunological status did not significantly influence the expression of colonic junction proteins. LBP and CD14s were higher in seronegative from RA compared to controls (p = 0.002 and p = 0.003). LBP, CD14s and zonulin levels significantly correlated with DAS28 (r = 0.61, p = 0.005; r = 0.51, p = 0.030 and r = 0.46, p = 0.049, respectively). After treatment, unlike non-responders, LBP and CD14s were significantly reduced in DMARD responders and variations in LBP and CD14s significantly correlated with changes in DAS28 (r = 0.46, p = 0.002 and r = 0.33 and p = 0.030, respectively).

Conclusion: This work is one of the first to explore intestinal permeability in RA and to show altered tight junction in colonic tissue from RA. This increased intestinal permeability appears to be related to the systemic inflammation. Improving the gut microbiota through food or probiotics could enhance the effect of treatment by limiting this amplification loop of inflammation.

REFERENCES:

