secretion by patient-derived monocytes, a mechanism with translational potential in SpA.

Conclusion: Our detailed characterization of Tregs at an important inflammatory site illustrates the marked specialization of Treg subpopulations and identifies a broad transcriptional profile upregulated across all synovial regulatory cells. Our TCR analysis provides evidence of Treg clonal expansion, which may be driven by antigen, and confirms functional specialisation of individual clones. We also propose a new insight into a Treg functional mechanism through LAG-3 that suggests a novel therapeutic approach to immune-driven diseases.

REFERENCES:
[1] Penkava et al., Nature Communications, 2020

Disclosure of Interests: Davide Simone: None declared, Frank Penkava: None declared, Anna Ridley: None declared, Stephen Sansom: None declared, Hussein Ali Mossawi Employee of: UCB, Paul Bowrence Grant/research support from: Regeneron, Celgene/BMS and GSK.

DOI: 10.1136/annrheumdis-2021-eular.4278

OP0033 REGULATORY T CELL CD39 EXPRESSION AS A PREDICTOR OF EARLY REMISSION-INDUCTION WITH METHOTREXATE IN NEW-ONSET RHEUMATOID ARTHRITIS

P. Brown1,2, A. Anderson1, B. Hargreaves3, A. Morgan4, J. D. Isaacs1,2, A. Pratt1.1 Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; 2Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; 3Leeds Institute of Cardiovascular and Metabolic Medicine, Discovery and Translational Science Department, School of Medicine, University of Leeds, Leeds, United Kingdom; 4National Institute for Health Research, Leeds Biomedical Research Centre, Leeds, United Kingdom

Background: The long term outcomes for patients with rheumatoid arthritis (RA) depend on early and effective disease control. Methotrexate remains the key first line disease modifying therapy for the majority of patients, with 40% achieving an ACR50 on monotherapy1. There are at present no effective biomarkers to predict treatment response, preventing effective personalisation of therapy. A putative mechanism of action of methotrexate, the potentiation of anti-inflammatory adenosine signalling, may inform biomarker discovery. By antagonism of the ATIC enzyme in the purine synthesis pathway, methotrexate has been proposed to increase the release of adenosine moieties from cells, which exert an anti-inflammatory effect through interaction with ADORA2 receptors2. Lower expression of CD39 (a cell surface 5'-ectonucleotidase required for the first step in the conversion of ATP to adenosine) on circulating regulatory T-Lymphocytes (Tregs) was previously identified in patients already established on methotrexate who were not responding (DAS28 >4.0 vs <3.0)(3). We therefore hypothesised that pre-treatment CD39 expression on these cells may have clinical utility as a predictor of early methotrexate efficacy.

Objectives: To characterise CD39 expression in peripheral blood mononuclear cells in RA patients naive to disease modifying therapy commencing methotrexate, and relate this expression to 4 variable DAS28CRP remission (<2.6) at 6 months.

Methods: 68 treatment naive early RA patients starting methotrexate were recruited from the Newcastle Early Arthritis Clinic and followed up for 6 months. Serial blood samples were taken before and during methotrexate therapy with peripheral blood mononuclear cells isolated by density centrifugation. Expression of CD39 by major immune subsets (CD4+ and CD8+ T-cells, B-lymphocytes, natural killer cells and monocytes) was determined by flow cytometry. The statistical analysis used was binomial logistic regression with baseline DAS28 used as a covariate due to the significant association of baseline disease activity with treatment response.

Results: Higher pre-treatment CD39 expression was observed in circulating CD4+ T-cells of patients who subsequently achieved clinical remission at 6 months versus those who did not (median fluorescence 4854.0 vs 3324.2; p = 0.0108; Figure 1-A). This CD39 expression pattern was primarily accounted for by the CD4+CD25 high sub-population (median fluorescence 9804.7 vs 6455.5; p = 0.0108; Figure 1-A). This CD39 expression pattern was primarily accounted for by the CD4+CD25 high sub-population (median fluorescence 9804.7 vs 6455.5; p = 0.0108; Figure 1-A). This CD39 expression pattern was primarily accounted for by the CD4+CD25 high sub-population (median fluorescence 9804.7 vs 6455.5; p = 0.0108; Figure 1-A).

Conclusion: These findings support the potential role of CD39 in the mechanism of methotrexate response. Expression of CD39 on circulating Tregs in treatment-naive RA patients may have particular value in identifying early RA patients likely to respond to methotrexate, and hence add value to evolving multi-parametric discriminatory algorithms.

REFERENCES:

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.2030

OP0034 STP938, A NOVEL, POTENT AND SELECTIVE INHIBITOR OF CTP SYNTHASE 1 (CTPS1) DEMONSTRATES EFFECTIVE RODENT MODELS OF INFLAMMATION AND ARTHRITIS

H. Asnaghi1, A. Novak1, L. Birch1, R. Lane2, N. Minet3, D. Laughton4, P. George4, G. De Ribbons5, S. Latour6, A. Fischer7, T. Bourne1, A. Parker1, Step Pharma, Pharmacology, Archamps, France; 2Signature Discovery, Discovery Building-BioCity Building, Nottingham, United Kingdom; 3Institut Imagine, Laboratory of Lymphocyte Activation & EBV Susceptibility, INSERM-U1163, Paris, France; 4Independent consultant, Drug Discovery & Development, Paris, France; 5Gamut, Therapeutics, Paris, France; 6INSERM-U1163, AP-HP, Paris, France; 7Mivuswood, Consultancy, High Wycombe, United Kingdom

Background: The final rate-limiting step in pyrimidine synthesis is the conversion of UTP to CTP which is catalyzed by cytidine triphosphate synthase 1 (CTPS1) or CTPS2. A hypomorphic mutation in the CTPS1 gene has highlighted the essential and non-redundant role of CTPS1 in T and B lymphocyte proliferation. The final rate-limiting step in pyrimidine synthesis is the conversion of UTP to CTP which is catalyzed by cytidine triphosphate synthase 1 (CTPS1) or CTPS2. A hypomorphic mutation in the CTPS1 gene has highlighted the essential and non-redundant role of CTPS1 in T and B lymphocyte proliferation. Selective inhibition of CTPS1 represents a novel targeted approach to dampen anti-proliferative activity of STP938 was investigated using in vivo models of inflammation and arthritis.

Methods: The in vitro anti-proliferative activity of STP938 was investigated using cell lines and primary human PBMCs. STP938 was assessed in vivo using the DTH-KLH rat model and the mouse collagen-induced arthritis (CIA) model. For the KLH-DTH model, Lewis rats were immunized with KLH, a weak allergen, which was administered on day 1. Blood samples were collected for detection of KLH-specific IgG3 levels at day 8. STP938 was given orally one-hour prior to immunization and then b.i.d. for 7 days. For the CIA model, DBA-1 mice were immunized with Collagen type II and complete Freund’s adjuvant and received a booster immunization three times. The long term outcomes for patients with rheumatoid arthritis (RA) depend on early and effective disease control.

Disclosure of Interests: None declared

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.2030