secretion by patient-derived monocytes, a mechanism with translational potential in SpA.

Conclusion: Our detailed characterization of Tregs at an important immunometabolic site illustrates the marked specialization of Treg subpopulations and identifies a broad transcriptional profile upregulated across all synovial regulatory cells. Our TCR analysis provides evidence of Treg clonal expansion, which may be driven by antigen, and confirms functional specialisation of individual clones. We also propose a new insight into a Treg functional mechanism through LAG-3 that suggests a novel therapeutic approach to immune-driven diseases.

REFERENCES:
[1] Penkava et al., Nature Communications, 2020

Disclosure of Interests: Davide Simone: None declared, Frank Penkava: None declared, Anna Ridley: None declared, Stephen Sansom: None declared, Hussein Al Mossawi Employee of: UCB, Paul Bowness Grant/research support from: Regeneron, Celgene/BMS and GSK

DOI: 10.1136/annrheumdis-2021-eular.4278

Figure 1. Six month DAS28CRP remission versus pre-treatment median fluorescence of CD39 expression on CD4+ T-cells (A); CD25 High expressing CD4+ T-cells (B); and ROC curve of predictive utility of pre-treatment CD39 expression on CD25 High CD4+ T-cells (C).

Conclusion: These findings support the potential role of CD39 in the mechanism of methotrexate response. Expression of CD39 on circulating Tregs in treatment-naive RA patients may have particular value in identifying early RA patients likely to respond to methotrexate, and hence add value to evolving multi-paramater discriminatory algorithms.

REFERENCES:

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.2030

OP0033 REGULATORY T CELL CD39 EXPRESSION AS A PREDICTOR OF EARLY REMISSION-INDUCTION WITH METHOTREXATE IN NEW-ONSET RHEUMATOID ARTHRITIS

P. Brown1,2, A. Anderson1, B. Hargreaves1, A. Morgan1,4, J. D. Isaacs1,3, A. Pratt1,5, 1Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; 2Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; 3Leeds Institute of Cardiovascular and Metabolic Medicine, Discovery and Translational Science Department, School of Medicine, University of Leeds, Leeds, United Kingdom; 4National Institute for Health Research, Leeds Biomedical Research Centre, Leeds, United Kingdom

Background: The long term outcomes for patients with rheumatoid arthritis (RA) depend on early and effective disease control. Methotrexate remains the key first line disease modifying therapy for the majority of patients, with 40% achieving an ACR50 on monotherapy1. There are at present no effective bio-markers to predict treatment response, preventing effective personalisation of therapy. A putative mechanism of action of methotrexate, the potentiation of anti-inflammatory adenosine signalling, may inform biomarker discovery. By antagonism of the ATIC enzyme in the purine synthesis pathway, methotrexate has been proposed to increase the release of adenosine moieties from cells, which exert an anti-inflammatory effect through interaction with ADORA2 receptors2. Lower expression of CD39 (a cell surface 5'-ectonucleotidase required for the first step in the conversion of ATP to adenosine) on circulating regulatory T-lymphocytes (Tregs) was previously identified in patients already established on methotrexate who were not responding (DAS28 >4.0 vs <3.0)(3). We therefore hypothesised that pre-treatment CD39 expression on these cells may have clinical utility as a predictor of early methotrexate efficacy.

Objectives: To characterise CD39 expression in peripheral blood mononuclear cells in RA patients naïve to disease modifying therapy commencing methotrexate, and relate this expression to 4 variable DAS28CRP remission (<2.6) at 6 months.

Methods: 68 treatment naïve early RA patients starting methotrexate were recruited from the Newcastle Early Arthritis Clinic and followed up for 6 months. Serial blood samples were taken before and during methotrexate therapy with peripheral blood mononuclear cells isolated by density centrifugation. Expression of CD39 by major immune subsets (CD4+ and CD8+ T-cells, B-lymphocytes, natural killer cells and monocytes) was determined by flow cytometry. The statistical analysis used was binomial logistic regression with baseline DAS28CRP remission (<2.6) at 6 months.

Results: 68 treatment naïve early RA patients starting methotrexate were recruited from the Newcastle Early Arthritis Clinic and followed up for 6 months. Serial blood samples were taken before and during methotrexate therapy with peripheral blood mononuclear cells isolated by density centrifugation. Expression of CD39 by major immune subsets (CD4+ and CD8+ T-cells, B-lymphocytes, natural killer cells and monocytes) was determined by flow cytometry. The statistical analysis used was binomial logistic regression with baseline DAS28CRP remission (<2.6) at 6 months.

Conclusion: These results support the potential role of CD39 in the mechanism of methotrexate response. Expression of CD39 on circulating Tregs in treatment-naive RA patients may have particular value in identifying early RA patients likely to respond to methotrexate, and hence add value to evolving multi-paramater discriminatory algorithms.

REFERENCES:

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.2030

OP0034 STP938, A NOVEL, POTENT AND SELECTIVE INHIBITOR OF CTP SYNTHASE 1 (CTPS1) DEMONSTRATES EFFICACY IN RODENT MODELS OF INFLAMMATION AND ARTHRITIS

H. Asnagli1, A. Novak1, L. Birch1, R. Lane4, N. Minet4, D. Laughton4, P. George1, G. De Ribains3, S. Latour2, A. Fischer6, T. Bourne7, A. Parker1, 1Step Pharma, Pharmacology, Archamps, France; 2Signature Discovery, Discovery Building-Biocity Building, Nottingham, United Kingdom; 3Institut Imagine, Laboratory of Lymphocyte Activation & EBV Susceptibility, INSERM-U1163, Paris, France; 4Independent consultant, Drug Discovery & Development, Paris, France; 5Gamut, Therapeutics, Paris, France; 6INSERM-U1163, AP-HP, Paris, France; 7Mihuwood, Consultancy, High Wycombe, United Kingdom

Background: The final rate-limiting step in pyrimidine synthesis is the conversion of UTP to CTP which is catalyzed by cytidine triphosphate synthase 1 (CTPS1) or CTPS2. A hypomorphic mutation in the CTPS1 gene has highlighted the essential and non-redundant role of CTPS1 in T and B lymphocyte proliferation1. These patients exhibit no effects on non-hematopoietic tissues. Thus, selective inhibition of CTPS1 represents a novel targeted approach to dampen anti-proliferative activity of STP938 was investigated using in vivo models of disease. This compound is an orally bioavailable, small molecular weight, selective inhibitor of CTPS1 developed by Step Pharma.

Objectives: To demonstrate the in vivo efficacy of CTPS1 inhibition on T and B cell proliferation and the therapeutic potential of STP938 using in vivo models of disease.

Methods: The in vitro anti-proliferative activity of STP938 was investigated using cell lines and primary human PBMCs. STP938 was assessed in vivo using the DTH-KLH rat model and the mouse collagen-induced arthritis (CIA) model. For the KLH-DTH model, Lewis rats were immunized with KLH, a week later, challenged locally at the ear with KLH antigen, ear swelling was assessed after 24 hours. Blood samples were collected for detection of KLH-specific IgG levels at day 8. STP938 was given orally one-hour prior to immunization and then b.i.d. for 7 days. For the CIA model, DBA-1 mice were immunized with Collagen type II and complete Freund’s adjuvant and received a booster immunization three
weeks later. STP938 was administered to mice developing signs of arthitis from Day 28 to 45 orally daily b.i.d.

Results: STP938 inhibited in vitro proliferation of HEK293 but not HEK-CTPS1α cells as well as Jurkat and human PBMCs. STP938 demonstrated a significant and dose-dependent inhibition of KLH-specific T and B cell responses in vivo. STP938 significantly reduced the disease severity in the CIA model in a dose-dependent manner as determined by clinical and histopathological readouts.

Conclusion: Our preliminary in vitro and in vivo results indicate that inhibition of CTPS1 specifically blocks proliferation of cells derived from the lymphocyte lineage and reduces the T cell driven inflammatory response. These data highlight the potential therapeutic potential of STP938 in treating patients with autoimmune diseases such as rheumatoid arthritis.

REFERENCES:

Disclosure of Interests: Hélène ASSEL Employee of: Step Pharma, Andrew Novak: None declared, Laurence Birch Shareholder of: Step Pharma, Rebecca Lane: None declared, Norbert Minet Employee of: as Ph D student under CIFRE grant, David Laughton: None declared, Pascal George Shareholder of: as former employee of Step Pharma, Sylvain Latour: None declared, Alain Fischer: None declared, Tim Bourne Shareholder of: UCB, Step Pharma, Stryx Therapeutics, Consultant of: a range of biotech companies, Employee of: former employee of Step Pharma and Stryx Therapeutics, Andrew Parker Employee of: Step Pharma

DOI: 10.1136/annrheumdis-2021-eular.148

OP0036

IL-6 ACTIVATES YES-ASSOCIATED PROTEIN (YAP) IN FIBROBLASTS AND INDUCES YAP-SNAIL COMPLEX FORMATION TO DRIVE SYNOVIAL LINING PATHOLOGY IN INFLAMMATORY ARTHRITIS

R. Symons, F. Colella, F. Collins, A. Roeiols, C. De Bani, Arthritis and Regenerative Medicine Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK

Background: In rheumatoid arthritis (RA), the fibroblast-like synoviocytes (FLS) in synovial lining become invasive and cause joint destruction. The molecular mechanisms underpinning this pathogenic FLS phenotype are incompletely understood. The FLS descend from Growth differentiation factor 5 (Gdf5)-expressing interjoint zone cells in the embryo, and we showed that conditional ablation of the transcriptional co-activator Yes associated protein (Yap) in Gdf5-lineage cells prevents synovial hyperplasia after traumatic synovial injury in mice [1].

Objectives: Here, we investigated a potential role for Yap in pathogenic FLS in immune-mediated inflammatory arthritis.

Methods: Immunohistochemistry was used to detect Yap in human RA synovium and Yap, Snail and Ctgf in mouse synovium following antigen-induced arthitis (AIA). To determine the effect of Yap knockout (KO) in synovial stromal cells, AIA was induced in Gdf5-Cre:t-Emx1;Yap Fl/fl (Yap cKO) and Gdf5-Cre:t-Emx1;Yap Fl/fl;Ctgf Fl/fl (control) mice, or in Pdgfrα-Cre:Yap Fl/fl (Yap cKO, targeting Pdgfrα-expressing fibroblasts) and Yap Fl/fl or Yap Fl/fl (control) mice after adult tamoxifen induction. Yap KO in both models was confirmed by immunohistochemistry. After nine days, arthritis severity was determined by histological scoring of synovial lining hyperplasia, immune infiltrates, cellular exudate, and marginal erosions. tdTomato+ Gdf5-lineage cells in synovium were quantified. In vitro, Yap reporter cells were treated with inflammatory cytokines to evaluate their ability to stimulate Yap-induced GFP expression by flow cytometry. Snail overexpression, siRNA-mediated Yap knockdown, and IL-6/sIL-6R stimulation were performed on normal mouse FLS, AIA-FLS or human RA-FLS, and cell invasion through a matrigel-coated transwell was quantified. A proximity ligation assay was utilised to detect Yap/Snail complex formation.

Results: Average expression levels of Yap (p<0.001), its transcription factor partner Snail (p<0.002), and their downstream target Ctgf (p<0.0003), were increased in mouse synovium after AIA (n=5), and Yap was highly expressed by FLS in human RA synovium. Yap cKO mice (n=24) showed a significantly decreased arthritis severity (p<0.002) after AIA compared to controls (n=22), with significant reductions in synovial lining hyperplasia (p<0.001), synovial immune cell infiltrates (p<0.026) and marginal erosions (p<0.002). Similarly, Yap cKO mice (n=6) showed a significant decrease in arthritis score (p<0.039) after AIA compared to controls (n=9). However, both control mice (p>0.001) and Yap cKO mice (p>0.001) showed an extensive expansion of tdTomato+ Gdf5-lineage synovial cells after AIA, with no significant difference between control and Yap cKO mice. In vitro, Yap knockdown prevented IL-6/sIL-6R-induced invasion of normal mouse FLS (p=0.037) and induced apoptosis of RA-FLS (p=0.0057). Using Yap reporter cells, we found that Yap was activated by IL-6/sIL-6R (p=0.016), but not TNFα or IL-1β. Finally, IL-6/sIL-6R treatment of normal mouse FLS (p=0.033) or human RA-FLS (p=0.036) induced Yap-Snail complex formation, and Yap knockdown prevented FLS invasion induced by Snai overexpression (p=0.027).

Conclusion: These data demonstrate that via activation by IL-6, and co-operation with the transcription factor Snail, Yap acts as a key modulator of the invasive and destructive phenotype of FLS in inflammatory arthritis. Therapeutic targeting of Yap could reduce joint destruction in RA.

REFERENCES:

Disclosure of Interests: This work was funded by the Medical Research Council (MR/L020211/1 and MR/L022893/1) and Versus Arthritis (20775 and 21156).

DOI: 10.1136/annrheumdis-2021-eular.2530