Background: Giant cell arteritis (GCA) represents the most prevalent form of systemic vasculitis in elderly, characterized by a remarkable heterogeneity in terms of clinical and histological phenotype, the pathogenetic mechanisms and treatment selection (1). An interplay between cells of both innate and adaptive immunity, appear to govern the pathophysiological mechanisms (2). Among the different cellular populations, neutrophils may hold a central role in GCA pathogenesis, since they are present in abundance in tissue injury (3,4). Most importantly, they are a source of neutrophil extracellular traps (NETs) that may deliver immunocompetent substances, necessary for the perpetuation of the inflammatory response (5). The detection and function of NETs have not been studied in GCA.

Objectives: To explore the presence and clinical significance of NETs in temporal artery biopsies (TABs) of patients with GCA.

Methods: Ten patients with GCA (5 with limited cranial vasculitis (CV) and 5 with associated generalized large vessel vasculitis (LVV), as defined by 2Fluorodeoxyglucose (FDG) positron-emission tomography with computed tomography (PET/CT)) and 8 patients with polymyalgia rheumatica (PMR) were studied. GCA and PMR patient and the 1990 ACR and 2012 EULAR/ACR provisional classification criteria, respectively. The presence, location, quantitation and decoration of NETs with IL-6, IL-1β, and IL-17A were assessed in TABs at the time of disease diagnosis by tissue immunofluorescence and confocal microscopy. Quantification of NETs in tissue sections was performed using the Imaius v.9.3 software that counts the total measure volume instead of only the projection area (6). Serum levels of IL-6 and IL-17A around the time of tissue biopsy were also evaluated in all patients.

Results: All temporal artery biopsies from GCA patients had NETs located mainly in the adventitia, adjacent to the vasa vasorum, whereas TABs from PMR patients had no NET structures. LVV was associated with a higher NETs to total CD4+ mononuclear cell ratio compared to CV (n=0.0317). NETs decorated with IL-6 were present in TABs of all LVV and 3 of 5 CV-GCA patients, while IL-17A positive NETs were observed in all GCA patients. IL-1β positive NETs were not detected in any GCA patient. No relation was found between serum IL-6 and IL-17A levels and NETs containing IL-6 and/or IL-17A.

Conclusion: NETs bearing IL-6 and IL-17A cytokines are present in inflamed GCA-TABs. IL-6 positive NETs are associated with the LVV phenotype and might be useful as a tissue biomarker for disease severity and extent.

REFERENCES:

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.735

Of mice and man: insights into pathophysiology of rheumatoid arthritis and spondyloarthritis.

OP0030 TREATMENT OF NON-BIOLOGIC-DMARD-IR PSA PATIENTS WITH UPADACITINIB OR ADALIMUMAB RESULTS IN THE MODULATION OF DISTINCT FUNCTIONAL PATHWAYS: PROTEOMICS ANALYSIS OF THE SELECT-PSA 1 PHASE 3 STUDY


aAbbVie, Precision Medicine Immunology, Redwood City, United States of America; bAbbVie, Immunology Clinical Development, North Chicago, United States of America; cUniversity of Rochester, Allergy/Immunology and Rheumatology, Rochester, United States of America; dUniversity of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom

Background: Treatment of non-biologic-DMARD-IR (DMARD-IR) PSA patients with upadacitinib (UPA) at 15mg QD, an oral JAK1 selective inhibitor, resulted in improvement in musculoskeletal symptoms, psoriasis, physical function, fatigue, quality of life, and inhibited radiographic progression; improvements were observed as early as Week 2 (ACR20 and ACR50). UPA 15mg QD was non-inferior to adalimumab (ADA) 40mg EDW for ACR20.

Objectives: To determine the relative biological pathway modulation of UPA compared with ADA in patients with PsA via the evaluation of a pre-defined set of plasma proteins associated with inflammation.

Methods: Patients from the SELECT-PSA1 study (DMARD-IR PsA patients) were randomly selected (PBO, n=100; UPA 15mg QD, n=100; ADA 40mg QEW, n=100). The levels of 92 inflammation related protein biomarkers (pBM) were analyzed using a multiplexed Proximity Extension Assay platform in plasma samples collected at baseline, week 2, and 12; change from baseline in protein levels were expressed as Log2 Fold Change; A Repeated Measure Mixed Linear Model identified proteins modulated by UPA and ADA compared to Baseline. Functional pathway prediction was performed in silico with a commercially distributed software where 52 significantly modulated pBM (mean Log2 FCI ≥0.1 AND FDR ≤0.05) were selected; results were summarized based on 3 core biological groups: 1) adaptive immune system, 2) innate immune system, and 3) non-immune connective and vascular systems.

Results: At the single pBM-level, at the week 2 and 12 points of time, treatment with UPA 15mg QD resulted in distinct down modulation of T cell-associated (CD5, CD8, L15RA, SLAMF1, TRANCE) and myeloid-cell associated pBM (CSF-1, CCL7, CCL13) that was not observed in the ADA treated group. Reciprocally, treatment with ADA 40mg QEW resulted in a specific down modulation of a subset of neutrophil associated pBM (CCL3, CCL4, and S100A12). Both treatments resulted in the down modulation of IFN-γ, IL-6, and TNF-related pBM (CXC9, CXCL10, CXCL11, IL6, TNFRSF19, and TNSF14) suggesting a common mode of activity related to these pivotal cytokine-signaling pathways.

Conclusion: Treatment with UPA also preferentially inhibited pathways related to bone damage and angiogenesis, as compared to the predicted effect of treatment with ADA. Finally, both treatments were predicted to inhibit multiple pathways associated with the activity of myeloid cells and phagocytes.

Disclosure of Interests: Thierry Sornasse Shareholder of: AbbVie, Employee of: AbbVie, Jaclyn Anderson Shareholder of: AbbVie, Employee of: AbbVie, Koji Kato Shareholder of: AbbVie, Employee of: AbbVie, Apinya Lertratanakul Shareholder of: AbbVie, Employee of: AbbVie, Christopher T. Ritchlin Consultant of: AbbVie, Amgen, Celgene, Janssen, Lilly, Novartis, Pfizer, Sun, UCB, Grant/research support from: AbbVie, Amgen, UCB, Ian McInnes Consultant of: AbbVie, Bristol-Myers Squibb, Celgene, Eli Lilly, Gilead, Janssen, Novartis, Pfizer, Sanofi Regeneron, UCB Pharma, Grant/research support from: AbbVie, Bristol-Myers Squibb, Celgene, Eli Lilly, Gilead, Janssen, Novartis, Pfizer, Sanofi Regeneron, UCB Pharma

Acknowledgements: AbbVie funded this study and participated in the study design, research, analysis, data collection, interpretation of data, reviewing, and approval of the publication. All authors had access to relevant data and participated in the drafting, reviewing, and approval of this publication. No honoraria or payments were made for authorship.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.1462