Conclusion: The newly described antibodies against GPCR, GF and GFR are highly correlated. Associations with morbidity- and mortality-determining organ involvement indicate their possible functional relevance and novel pathophysiological mechanisms. As new biomarkers, some of the ab have prognostic value for SSc; for other manifestations, their value should be evaluated in further studies.

REFERENCES:

Disclosure of Interests: Kristina Sterner: None declared, Césaire J.K. Fouo: None declared, Inke König: None declared, Axel Künster: None declared, Hauke Busch: None declared, Harald Heidecke Shareholder of: Owner of Cell Bios, None declared, Gabriela Riemekasten: None declared, Susanne Schinke Grant/research support from UCSC sponsors EULAR registration fees

DOI: 10.1136/annrheumdis-2021-eular.1504

OP0245
ANTI-S100A4 MONOCLONAL ANTIBODY TREATMENT AMELIORATES SKIN FIBROSIS IN INFLAMMATORY AND NON-INFLAMMATORY PRE-CLINICAL MODELS OF SYSTEMIC SCLEROSIS


Institute of Rheumatology and First Faculty of Medicine, Charles University, Department of Rheumatology, Prague, Czech Republic; 2Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Department of Internal Medicine III, Erlangen, Germany; 3Arxx Therapeutics, Arxx Therapeutics, Oslo, Norway

Background: AX-202 is a monoclonal antibody that inhibits the bioactivity of S100A4. S100A4 is an alarm signal that is released from cells in response to stress or injury and functions as an amplifying mechanism of inflammation and fibrosis in the diseased tissue microenvironment. Previous in vitro studies have found that S100A4 induces fibroblast activation, sensitizes fibroblasts to the effects of TGFβ, drives epithelial-mesenchymal transition, and stimulates monocyte cytokine release (-3). Moreover, S100A4+/- mice are protected from fibrosis in several animal models (1). In patients with systemic sclerosis (SSc), S100A4 is elevated both in lesional tissue and systemically and correlates with skin involvement, disease activity, and pulmonary function.

Objectives: The aim of this study was to assess the antibiotic effects of murine AX-202 in two pre-clinical models of SSc reflecting both inflammation-mediated and inflammation non-mediated fibrosis and confirm the in vivo activity of humanized AX-202.

Methods: We first evaluated the effects of murine AX-202 in the bleomycin-induced skin fibrosis model and the tight-skin 1 (Tsk-1) model. In the bleomycin (BLM) model, fibrosis was induced by 3 weeks of BLM s.c. injections followed by 2 weeks of AX-202 treatment in parallel with continued BLM s.c. injections. The control groups included NaCl s.c. injections for 6 weeks, BLM s.c. injections for 6 weeks, or BLM s.c. injections for 3 weeks, followed by NaCl s.c. injections for 3 weeks. Three dosing regimens of AX-202 were tested: 3.75, 7.5, or 12.5 mg/kg i.p. every 3rd day. In the Tsk-1 model, treatment with 75 mg/kg i.p. every 3rd day was started contemporaneously with the induction of fibrosis and persisted for 5 weeks. In both the BLM and Tsk-1 settings, the control groups included pimecrolimus, 1 mg/kg, twice daily, and placebo. We subsequently evaluated the effects of humanized AX-202 in the model of BLM-induced skin fibrosis in a similar design as used for the murine AX-202 study. Three dosing regimens were tested: 8 mg/kg and 16 mg/kg i.p. every 3rd day and 24 mg/kg i.v. once weekly.

Results: In the BLM model, murine AX-202 (7.5 mg/kg) was effective both in the prevention of progression of pre-established skin fibrosis and in the induction of regression of fibrosis as assessed by the dermal thickness (-55%, p<0.0001 vs BLM for 6 weeks, and -23%, p<0.0001 vs BLM for 3 weeks), myofibroblast count and hydroxyproline content. Murine AX-202 also ameliorated fibrosis in the Tsk-1 model as assessed by the hypodermal thickness (-24%, p<0.01 vs Tsk-1 isotype-control), myofibroblast count, and hydroxyproline content. In both models, the antibiotic effects were associated with a reduction in pSMAD3 expression. Humanized AX-202 was effective in the prevention of progression of pre-established skin fibrosis in all doses tested across all endpoints (dermal thickness, myofibroblast counts, hydroxyproline content). In the two groups treated with 16mg/kg i.p. and 24 mg/kg i.v., humanized AX-202 also induced regression of fibrosis (-83%, p<0.001, and -61%, p<0.001 vs BLM for 3 weeks, respectively). Both murine and humanized AX-202 were well tolerated in all study groups in both models.

Conclusion: We demonstrate that AX-202 confers potent antibiotic effects in complementary models of SSc. These results confirm and expand previous data showing that inhibition of S100A4 by AX-202 is a promising potential therapeutic candidate for disease modification in SSc or other fibrotic conditions.

REFERENCES:

Acknowledgements: The study was supported by Arxx Therapeutics and MHR 023728.

Disclosure of Interests: Michal Tomlja: None declared, Thuyong Trinh-Minh: None declared, Cuong Tran Manh: None declared, Hana Storková: None declared, Lenka Storková: None declared, Ladalis Šenolt: None declared, Jörg Klingelhöfer Employee of: Arxx Therapeutics, Rizwan I Hussain Employee of: Arxx Therapeutics, Jonas Hallén Employee of: Arxx Therapeutics, Jörg H.W. Distler Shareholder of: the stock owner of 4D Science, Consultant of: Actelion, Active Biotech, Anamar, ARXX, Bayer Pharma, Boehringer Ingelheim, Celgene, Galapagos, GSK, Inventiva, JB Therapeutics, Medac, Pfizer, RoYi and UCB, Grant/research support from: Anamar, Active Biotech, Array Biopharma, ARXX, aTyr, BMS, Bayer Pharma, Boehringer Ingelheim, Celgene, Galapagos, GSK, Inventiva, Novartis, Sanofi-Aventis, RedX, UCB

DOI: 10.1136/annrheumdis-2021-eular.1968

OP0246
PREDICTIVE VALUE OF LABORATORY AND INSTRUMENTAL FINDINGS IN THE VERY EARLY DIAGNOSIS OF SYSTEMIC SCLEROSIS. ROLE FOR CXCL4 CHEMOKINE

M. Cedar1, C. Angeli1, G. Pelegrino1, K. Stefanantoni1, R. Palazz0, R. Lande1, L. Frasca1, V. Ricci1,1 Sapienza University of Rome, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Roma, Italy; 2Italian National Institute of Health, National Centre for Pre-Clinical and Clinical Drug Research and Evaluation, Pharmacological Research and Experimental Therapy Unit, Roma, Italy

Background: Systemic sclerosis (SSc) is a rare and progressive autoimmune disease, whose diagnosis is difficult in the early stages because of the lack of specific signs and symptoms. Criteria for a Very Early Diagnosis of SSc (VEDOSS) have been proposed to identify those patients affected by undifferentiated connective tissue disease (UCTD) at risk to develop SSc [1]. For the diagnosis of SSc a strict clinical and laboratory follow up is mandatory [2]. CXCL4 chemokine recently proved to be higher in early SSc [3][4][5].

Objectives: Aim of our study was to evaluate at baseline the main clinical-demographic and laboratory parameters in a group of VEDOSS patients, comparing these features during the follow-up, to detect any difference between progressors (P) and non-progressors (NP) into SSc. Furthermore, we dosed plasma levels of CXCL4.

Methods: We included 27 VEDOSS patients, defined by EUSTAR 2011 Criteria and not fulfilling the 2013 ACR/EULAR classification criteria of SSc, attending the Rheumatology Unit of Policlinico Umberto I in Rome from 2009 to 2020. Demographic, laboratory and instrumental features were analyzed, and, after a mean follow-up of 5.7±1.7 years, we compared the P to NP patients. Having obtained written informed consent, blood samples were taken at baseline to measure plasma levels of CXCL4 and C1q in 13 patients as a subgroup of all patients enrolled at baseline.

Results: At baseline the 27 VEDOSS patients (mean age 53.2±13.5 years, all females) had ANA positivity in 25 (93%) cases and Raynaud’s phenomenon in 24 (93%) cases. In a mean follow-up time of 43.5±21.3 weeks from the first clinical examination, 15 (55%) patients were classified as P into SSc. These P patients showed a significant association with SSc specific antibodies such as anti-Scl70 and anti-RNAPIII (p=0.005), and had a shorter duration of RP (88±98.9 months) and a younger mean age (49.5±55.4 years) respect to ”NP”. As anti-Scl70 and anti-RNAPIII (p=0.005), and had a shorter duration of RP (88±98.9 months) and a younger mean age (49.5±55.4 years) respect to “NP”.

At baseline we detected significantly higher median plasma levels of CXCL4 in the 27 VEDOSS patients compared to 10 healthy subjects (9042±10559 pg/ml versus 348,5±684,3 pg/ml; p=0.0047). We also noticed a trend for lower CXCL4 levels in the “Fast Progressor” than in