SERIOUS INFECTION WITH TOCILIZUMAB COMPARED TO TNF-INHIBITORS AND OTHER BDMARDS IN RHEUMATOID ARTHRITIS PATIENTS: DOES LINE OF THERAPY MATTER?

K. Lauper1,2,3, L. Kearnsley-Fleet2, R. Davies2, K. Watson2, M. Lunt2, K. Hyrich2,4
1Hôpitaux Universitaires de Genève (HUG), Rheumatology, Genève, Switzerland; 2Faculty of Medicine, University of Geneva, Internal Medicine, Genève, Switzerland; 3Centre for Musculoskeletal Research, University of Manchester, Centre for Epidemiology Versus Arthritis, Manchester, United Kingdom; 4Manchester University NHS Foundation Trust, National Institute of Health Research Manchester Musculoskeletal Biomedical Research Centre, Manchester, United Kingdom

Background: In the real-world, tocilizumab is prescribed to a population of patients different from those prescribed TNF-inhibitors, often older with longer disease duration, worse functional status and more previous b- or tsDMARDs.

Objectives: The aim of this study was to evaluate if and how the risk of serious infection on tocilizumab and other bDMARDs differs when stratifying by line of therapy in a real-world population of rheumatoid arthritis patients.

Methods: We included patients registered in the BSRBR-RA treated with tocilizumab, etanercept, adalimumab, infliximab, certolizumab, abatacept or rituximab, including biosimilars. Primary outcome was the occurrence of a serious infection (defined as infection requiring hospitalisation, intravenous antibiotics or resulting in death). Primary covariate of interest was line of therapy (from first to fifth line of therapy). Every change to another b- or tsDMARD was considered a new line of therapy, but not a change between a bio-original and a biosimilar.

Hazard ratios (HR) of serious infections were estimated using an inverse probability weighted Cox regression, based on a propensity score including baseline patient and disease characteristics, and adjusting for time in study (see Table).

The reference group was etanercept, which included the highest number of patients. Treatment exposure was analysed without and with stratification by line of therapy.

Disclosure of Interests: Kim Lauper Consultant of: Gilead-galapagos, Grant/ research support from: AbbVie, Lianne Kearnsley-Fleet: None declared, Rebecca Davies: None declared, Kath Watson: None declared, Mark Lunt: None declared, Kimme Hyrich Consultant of: AbbVie, Grant/research support from: Pfizer, BMS DOI: 10.1136/annrheumdis-2021-eular.595

SYSTEMIC SCLEROSIS, MYOSITIS - ETIOLOGY, PATHOGENESIS AND ANIMAL MODELS

Z. Zhang1, L. Summa1, B. Heckmann2, J. H. W. Distler1,3
1Universitätsklinikum Erlangen, Department of Internal Medicine 3 – Rheumatology and Immunology, Erlangen, Germany; 2Galapagos SAU, Drug Innovation, Romainville, France

Background: There is an unmet medical need for new drugs to treat systemic sclerosis (SSc). Autotaxin (ATX) is a widely expressed enzyme that regulates diverse cellular processes, including proliferation, differentiation and migration, and has been implicated in the pathogenesis of SSc. Targeting ATX is a promising new strategy for treating SSc. The autotaxin inhibitor ziritaxestat (GLP1690) is a potential first-in-class disease-modifying drug for SSc that has been shown to improve skin phase in the Phase 2a NOVAES (NCT03798366) trial in patients with SSc.

Objectives: To investigate the effects of ziritaxestat in a chronic graft-versus-host disease (cGVHD) murine model of SSc.

Methods: Effects of ziritaxestat (10 or 30 mg/kg twice daily [bid]) on disease activity were assessed in a cGVHD murine model of SSc (allogeneic bone marrow transplantation [BMT] with B10.D2 donor and BALB/c recipient; syngeneic mice as controls). Ziritaxestat or nintedanib (60 mg/kg once daily [qd]) as active comparator was administered 21 d after BMT and continued for 35 d. Effects of ziritaxestat were assessed by clinical monitoring, histologic assessment of skin and lungs (dermal thickness, Ashcroft scores and collagen-covered area), immunofluorescence staining with Trichrome and Sirius Red for myofibroblasts, and biochemical analysis of collagen content, as measured by hydroxyproline levels.

Results: Ziritaxestat 30 mg/kg bid for 35 days significantly reduced the clinical cutaneous score in the murine cGVHD model by 57% (p<0.05) compared with vehicle, and to a similar extent when compared with nintedanib 60 mg/kg (38%; p<0.05). Dermal accumulation of collagen and dermal thickness (Figure) were reduced with ziritaxestat 10 and 30 mg/kg compared with vehicle. At 30 mg/kg, ziritaxestat reversed the increase in the allogeneic model (p<0.01), returning dermal thickness to the levels in non-fibrotic control mice. Ziritaxestat also significantly reduced pulmonary fibrosis in the cGVHD model, with reductions in the fibrotic lung area (ziritaxestat 10 and 30 mg/kg; p<0.01 for both) and Ashcroft scores (ziritaxestat 30 mg/kg; p<0.05). Ziritaxestat was generally well tolerated.

Conclusion: Ziritaxestat improved the histological, biochemical and clinical symptom readouts of dermal and pulmonary fibrosis in a murine model, consistent with a broad and rapid disease-modifying effect in SSc.

Figure. Effect of ziritaxestat on dermal thickness in a murine cGVHD model of SSc