Epidemiology and public health

OP0234

RISK OF ACUTE MYOCARDIAL INFARCTION AMONG NEW USERS OF CHONDROITIN SULPHATE: A NESTED CASE-CONTROL STUDY

R. Mazzucchelli1, S. Rodriguez-Martin2, A. Garcia-Vadillo2, M. Gill2, A. Rodriguez-Miguel2, D. Barreira-Hernandez2, A. Garcia-Lledo2, F. De Abajo1, F. Hospital Universitario Fundación Alcorcón, Madrid, Spain; 1Hospital Universitario Príncipe de Asturias, Asturias, Spain; 2Hospital Universitario de la Princesa, Madrid, Spain; 3Spanish Agency of Medicines and Medical Devices, Division of Pharmacoepidemiology and Pharmacovigilance, Madrid, Spain; 4Hospital Universitario Príncipe de Asturias, Clinical Pharmacology Unit, Meco, Spain; 5Hospital Universitario Universitario Príncipe de Asturias, Department of Cardiology, Alcalá de Henares, Spain; 6Hospital Universitario Príncipe de Asturias, 2 Clinical Pharmacology Unit, Alcalá de Henares, Spain

Background: There is some evidence from epidemiological studies suggesting that CS and glucosamine could play a role in cardiovascular disease (CVD) prevention (1-4). Studies to date have included prevalent users, therefore a bias that overestimates protection cannot be excluded.

Objectives: To test the hypothesis that chondroitin sulphate (CS) or glucosamine reduce the risk of acute myocardial infarction (AMI).

Methods: Case-control study nested in a primary cohort composed of patients aged 40 to 99 years, with at least one year of follow-up in the BIFAP database during the 2002-2015 study period. From this cohort of patients, we identified incident cases of AMI and randomly selected five controls per case, matched by exact age, gender, and index date. Adjusted odds ratios (AOR) and their corresponding 95% confidence interval (CI) were calculated through a conditional logistic regression. Only new users of CS or glucosamine were considered.

Results: A total of 23,585 incident cases of AMI and 117,405 controls were included. The mean age was 67 (SD 13.4) years and 71.7% were male. In both groups, 558 (2.37%) cases and 3,082 (2.62%) controls used or had used CS. The current use of CS was associated with a lower risk of AMI (AOR 0.57; 95% CI: 0.46–0.73) and disappeared after discontinuation (recent and past users). The reduced risk among current users was observed in both short-term (<365 days) AOR 0.58; 95% CI: 0.45–0.75) and long-term users (>364 days) AOR 0.56; 95% CI: 0.36–0.87), in both sexes (men, AOR=0.52; 95%CI:0.38-0.70; women, AOR=0.65; 95% CI: 0.46–0.91), in individuals over or under 70 years of age (AOR=0.54; 95%CI:0.38-0.77, and AOR=0.61; 95%CI:0.45-0.82, respectively) and in individuals at intermediate (AOR=0.65; 95% CI:0.48-0.91) and high cardiovascular risk (AOR=0.48-95% CI:0.27-0.83), but not in those at low risk (AOR=1.11; 95% CI:0.48-2.96). In contrast, the current use of glucosamine was not associated with either increased or decreased risk of AMI (AOR=0.86; CI95% 0.66-1.08)

Conclusion: Our results support a cardioprotective effect of CS, while no effect was observed with glucosamine. The highest protection was found among subgroups at higher cardiovascular risk.

REFERENCES:
Conclusion: Habitual pro-inflammatory dietary pattern was independently associated with higher risk of incident gout in these prospective cohorts, even beyond the pathway through adiposity. Our findings support a role for chronic inflammation in development of gout, similar to CVD and T2D. Adhering to a diet with lower inflammatory potential may modulate systemic inflammation, potentially reducing gout risk and these life-threatening comorbidities.

REFERENCES:
[1] Li et al. J Amer Coll Cardiology (2020) PMID 33153756
[3] Wallace et al. PMID 3562219
[4] Tabung et al. PMID 27358416
[5] Choi et al. PMID 15094272

Disclosure of Interests: Natalie McCormick: None declared, Chio Yokose: None declared, Leo Lu: None declared, Amit Joshi: None declared, Hyon Choi Consultant of: Ironwood, Selecta, Horizon, Takeda, Kowa, Vaxart, Grant/research support from: Ironwood, Horizon
DOI: 10.1136/annrheumdis-2021-eular.3430

Table 1. RA cases and controls with adjusted odds ratios and confidence intervals for overall risk of RA and by RA serostatus.

<table>
<thead>
<tr>
<th>Exposure variable</th>
<th>RA cases</th>
<th>Controls</th>
<th>RF+</th>
<th>RF-</th>
<th>All RA</th>
<th>RF+</th>
<th>RF-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunbathing<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>249</td>
<td>495</td>
<td>161</td>
<td>85</td>
<td>ref</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td>At least once a month</td>
<td>398</td>
<td>844</td>
<td>265</td>
<td>124</td>
<td>1.05</td>
<td>1.07</td>
<td>0.98</td>
</tr>
<tr>
<td>At least once a week</td>
<td>376</td>
<td>751</td>
<td>239</td>
<td>130</td>
<td>1.11</td>
<td>1.07</td>
<td>1.21</td>
</tr>
<tr>
<td>Daily</td>
<td>120</td>
<td>278</td>
<td>75</td>
<td>43</td>
<td>0.91</td>
<td>0.69-1.20</td>
<td>0.64-1.46</td>
</tr>
<tr>
<td>Travel<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never Seldom</td>
<td>314</td>
<td>537</td>
<td>208</td>
<td>103</td>
<td>ref</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td>Seldom</td>
<td>294</td>
<td>568</td>
<td>193</td>
<td>97</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>Once a year</td>
<td>359</td>
<td>805</td>
<td>227</td>
<td>121</td>
<td>0.82</td>
<td>0.77-1.25</td>
<td>0.71-1.35</td>
</tr>
<tr>
<td>More than once a year</td>
<td>176</td>
<td>463</td>
<td>112</td>
<td>61</td>
<td>0.68</td>
<td>0.63-1.02</td>
<td>0.61-1.13</td>
</tr>
<tr>
<td>Once a year Seldom Still have</td>
<td>991</td>
<td>2083</td>
<td>634</td>
<td>336</td>
<td>ref</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td>Never Seldom</td>
<td>153</td>
<td>290</td>
<td>107</td>
<td>46</td>
<td>1.07</td>
<td>1.08</td>
<td>1.11</td>
</tr>
</tbody>
</table>

OR = adjusted odds ratio, CI = confidence interval, N = number of participants, RA = rheumatoid arthritis, ref = reference, RF+ = rheumatoid factor. A frequency of sunbathing if the weather invites to go outside in a country sunnier than Sweden in the last 5 years?* A frequency of solarium use in the last 5 years?* A frequency of travel to sunnier countries than Sweden in the last 5 years?* A frequency of solarium use within the past five years do not seem to be strong risk factors for RA. Frequency of travels abroad was inversely associated to RA risk. The nature behind this association remains unclear.

Disclosure of Interests: Natalie McCormick: None declared, Chio Yokose: None declared, Leo Lu: None declared, Amit Joshi: None declared, Hyon Choi Consultant of: Ironwood, Selecta, Horizon, Takeda, Kowa, Vaxart, Grant/research support from: Ironwood, Horizon
DOI: 10.1136/annrheumdis-2021-eular.3430

OR0238

THE EFFECT OF UV-B RADIATION EXPOSURE ON THE RISK OF DEVELOPING RHEUMATOID ARTHRITIS

J Hagman¹, B Delcoigne¹, L Klareskog¹, L Alfredsson¹, J Askling¹, Karolinska Institute, Department of Medicine, Division of Clinical Epidemiology, Stockholm, Sweden

Background: UV-B radiation has known immunomodulatory properties, but to what extent UV-B radiation exposure might affect the occurrence of rheumatoid arthritis (RA) has been relatively little studied, and with partially contradictory results.

Objectives: To investigate the association between sun- and travel habits, as proxy markers for UV-B radiation exposure, and risk of incident RA, overall and by RA subtype.

Methods: We performed a matched case-control study of 1151 incident cases with new-onset RA and 2374 population controls from the Swedish Epidemiological Investigation of Rheumatoid Arthritis (EIRA) study, recruited between 2006 and 2017. The association between sunbathing frequency, solarium use, and frequency of travels to sunnier countries than Sweden (exposures) and risk of RA (outcome) were assessed as odds ratios (OR) with 95% confidence intervals (CI) through logistic regression, and adjusted for age, sex, residential region, year of study entry, body mass index, education, income, smoking and alcohol consumption. We further assessed effect modification by self-reported skin type, income and education, and by rheumatoid factor (RF) serostatus.

Results: Overall, the frequency of sunbathing, and solarium use, were similar among RA cases and controls: ‘never doing sunbathing’ amongst RA cases vs. controls: 22% vs. 21%, and solarium use 13% vs. 12%.

Conclusion: Proxy markers for UV-B exposure (sunbathing frequency and solarium use within the past five years) do not seem to be strong risk factors for RA. Frequency of travels abroad was inversely associated to RA risk. The nature behind this association remains unclear.

Disclosure of Interests: Natalie McCormick: None declared, Chio Yokose: None declared, Leo Lu: None declared, Amit Joshi: None declared, Hyon Choi Consultant of: Ironwood, Selecta, Horizon, Takeda, Kowa, Vaxart, Grant/research support from: JA acts or has acted as PI for agreements between Karolinska Institutet and the following entities, mainly in the context of the ARTIS national safety monitoring programme of immunomodulators in rheumatology: Abbvie, BMS, Eli Lilly, Merck, MSD, Pfizer, Roche, Sanofi, Samsung Bioepis, Sanofi, and UCB Pharma
DOI: 10.1136/annrheumdis-2021-eular.3430

OR0237

EXPOSURE TO ENVIRONMENTAL AIR POLLUTANTS AS A RISK FACTOR FOR PRIMARY SJÖGREN’S SYNDROME: A POPULATION-BASED COHORT STUDY

K. S. K. MA¹, L. T. Wang², National Taiwan University, Taipei, Taiwan, ROC, Department of Life Science, Taiepi, Taiwan, Republic of China; National Taiwan University Hospital, Department of Obstetrics & Gynecology, Taipei, Taiwan, Republic of China

Background: Recent studies suggest that air pollution may play a role in autoimmune diseases. However, few of them report the correlation between air pollution and primary Sjögren's syndrome (pSS).

Objectives: We sought to determine whether people exposed to environmental fine particulate air pollution have a higher risk of developing pSS.

Methods: We performed a retrospective population-based cohort study from the National Health Insurance Research Database (NHIRD) of Taiwan's population, using the international Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) to categorize each disease diagnosis. Air pollution data on Nitric oxide (NO), methane (CH4), and carbon monoxide (CO) were obtained from the Taiwan Air Quality-Monitoring Database (TAQMD), where daily air pollution data from community-based monitoring sites (78 sites since 1993) was available on a real-time basis. We followed up from January 1st, 1998 to the endpoint of SS diagnosis or to December 31, 2011. The daily average air pollutant concentrations were divided into 4 quartile-based groups (Q1-Q4). The incidence rate, hazard ratios (HRs), as well as 95% confidence intervals for pSS, were stratified by the quartiles of air pollutant concentration, and calculated with a Cox proportional regression model. Finally, Ingenuity Systems Pathway Analysis (IPA) was conducted to identify activated pathways among air way epithelial cells exposed to airborne coarse, fine, and ultrafine particles, and parotid gland tissues from pSS patients using Z-score visualization.

Results: A total of 200 patients were diagnosed with SS. The mean age of patients with pSS was 53.1 years. The incidence of pSS was 0.11%. With the increase in exposure concentrations of nitrogen dioxide, methane, and carbon monoxide (from Q1 to Q4), the incidence rate for pSS of per 1000 person-years increased from 0.7 to 1.19, from 0.93 to 2.14, and from 0.57 to 1.06, respectively. Moreover, compared with Q1, the adjusted HR in Q4 after adjusting for age, gender, monthly income and urbanization levels increased to 1.86, 2.21 and 2.04, respectively. IPA analyses suggested that the underlying cellular mechanisms involved up-regulation of chronic inflammatory pathways including fibrosis signaling pathway.

Conclusion: Exposure to air pollutants, specifically NO, CH4, and CO, was associated with SS development, mostly driven by fibrotic signaling cascades occurred during chronic inflammation.

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2021-eular.3430

OP0238

DRUG COST FOR BIOLOGIC AND TARGETED SYNTHETIC DMARDS FOR RHEUMATOID ARTHRITIS PATIENTS IN NORWAY FROM 2010 TO 2019 - A COUNTRY WITH A NATIONAL TENDER SYSTEM FOR DRUG PRESCRIPTION

A. Bricic¹, A. Diamantopoulos², G. Haugeberg³, on behalf of BioRheuma research project, 1Sarlandet Hospital, Kristiansand, Regional Department,