Emerging molecular targets in OA

OP0199
EX VIVO BIOMARKER PROFILING IDENTIFIES ONCOSTATIN-M AS SPINE OSTEOARTHRITIS-SPECIFIC OSTEOIMMUNOLOGICAL TARGET

O. Roessinger1, M. Blanchard1, M. Briki1, D. Juric2, C. Netzer1, T. Hügle1, T. Ecker1, J. Geurts1, 1Lausanne University Hospital, Rheumatology, Lausanne, Switzerland; 2University Hospital Basel, Orthopaedics & Traumatology Basel, Switzerland; 3Lausanne University Hospital, Spine Surgery, Basel, Switzerland; 4Lausanne University Hospital, Spine Surgery, Lausanne, Switzerland

Background: Disease heterogeneity, both clinically and molecularly, has been a major hurdle in the development of efficacious disease-modifying osteoarthritis drugs (DMOADs). Biomechanical, inflammatory, osteoporotic and metabolic OA have been proposed as clinically relevant subtypes for stratification of knee OA patients, yet this remains to be included in clinical trial design. Disease heterogeneity does not only occur within, but also between joint types. However, robust data on joint-specific pathomechanisms of OA are still lacking.

Objectives: In this study, we performed ex vivo biomarker profiling of human osteochondral tissue of knee and spine OA to identify joint-specific pathomechanisms and DMOAD treatment responses.

Methods: Facet joint and tibial plateaus were obtained from patients undergoing lumbar spinal fusion (n=11, mean age 72.8) and total joint arthroplasty (n=8, mean age 73.0) respectively. Osteochondral specimens were cut in equal-sized samples (100-300 mg, wet weight) and randomly assigned to treatment groups: control (DMSO), inflammation (1 μg/mL LPS) or inflammation + DMOAD (TGF-beta type I receptor inhibitor, 10 μM SB-505124). Explant culture was conducted for one week and biomarkers of bone metabolism (Pro-Col-Ia, SOST, OPN, SPP1), inflammation (MCP-1, IL-6, MMP3, OSM, TIMP1, VEGFA) and cartilage metabolism (ACAN, COMP) were determined by ELISA. Normalized biomarker secretion was analysed using cluster analyses and ANOVA. Cartilage proteoglycans were assessed by whole mount Alcian blue staining. Expression of Oncostatin-M (OSM) and its receptors OSMR and LIFR was determined using RT-PCR and immunohistochemistry.

Results: Cluster analyses revealed that LPS stimulation increased IL-6 and MCP-1 secretion by both facet joint (FJ) and knee joint (KJ) tissues. Interestingly, Oncostatin-M (OSM) and its downstream mediators MMP3 and TIMP1 were increased in the majority of FJ, but not KJ specimens. Statistical analyses corroborated increased OSM, MMP3 and TIMP1 levels in a spine-specific fashion (Figure). Whole mount Alcian blue staining revealed heterogeneous effects of LPS treatment on cartilage proteoglycans, which was negatively correlated with OSM (r=0.54) and TIMP1 levels (r=0.45) – yet poorly associated with ACAN (r=0.19). Inhibition of TGF-beta type I receptor signalling in osteochondral tissues led to a drastic reduction of Pro-Collagen-Ia and IL-6 secretion in both spine and knee OA specimens. Interestingly, DMOAD treatment significantly reduced OSM, TIMP1 and MMP3 levels in FJ specimens only. Vice versa, KJ tissue revealed a specific upregulation of monocyte chemoattractant protein-1 (MCP-1) and osteopontin (SPP1) upon inhibition of TGF-beta signalling. OSM was exclusively expressed in subchondral bone marrow macrophages. Isolated chondrocytes and osteoblasts expressed both LIFR and OSMR, yet intact cartilage only showed OSMR expression, while OSMR and LIFR was expressed in marrow tissue.

Conclusion: Oncostatin-M expression and signalling was uncovered as specific pathomechanism of spine OA. DMOAD treatment effects suggested interplay of OSM and TGF-beta signalling pathways in facet joint osteoarthritis. Known to be predominantly expressed by macrophages and immune cells, OSM may be an important osteoimmunological mediator of tissue damage and remodelling in spine, but not knee OA. This study also highlights the value of ex vivo human tissue models for OA phenotyping and preclinical evaluation of DMOADs.

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2021-eular.2493

OP0200
BLOCKING ROR2 IMPROVES CARTILAGE INTEGRITY AND PROVIDES PAIN RELIEF IN OSTEOARTHRITIS

A. S. Thorup1, D. Strachan1, S. Caxaria1, B. Poulet2, B. Thomas1, S. Eldridge1, G. Nalesso3, J. Whiteford1, C. Pitazis1, T. Aigner2, R. Corder6, J. Bertrand7, F. Dell’acclio1, 1William Harvey Research Institute, Experimental Medicine and Rheumatology, London, United Kingdom; 2University of Liverpool, Institute of Ageing and Chronic Disease, Liverpool, United Kingdom; 3School of Veterinary Medicine, Department of Veterinary Pre-Clinical Sciences, Guildford, United Kingdom; 4William Harvey Research Institute, Centre for Microvascular Research, London, United Kingdom; 5Medical Center Coburg, Institute of Pathology, Coburg, Germany; 6William Harvey Research Institute, Translational Medicine and Therapeutics, London, United Kingdom; 7Otto-von-Guericke University, Department of Orthopaedic Surgery, Magdeburg, Germany

Background: Osteoarthritis (OA) is the leading cause of chronic disability worldwide, affecting 12% of the population, and yet we still do not have a disease-modifying treatment. Cartilage breakdown is the hallmark of OA, and patients suffer from pain and loss of joint function/independence, severely affecting quality of life. Therefore, there is a huge unmet clinical need. Receptor tyrosine kinase-like orphan receptor 2 (ROR2) is a non-canonical WNT receptor that regulates the planar cell polarity pathway, controlling limb outgrowth during development. During skeletal development, chondrocytes require ROR2 to undergo hypertrophy throughout the process of endochondral bone formation. Loss of function mutations in humans causes Recessive Robinow Syndrome, leading to limb shortening and brachydactyly1-3.

Whole mount Alcian blue staining revealed heterogeneous effects of LPS treatment on cartilage proteoglycans, which was negatively correlated with OSM (r=0.54) and TIMP1 levels (r=0.45) – yet poorly associated with ACAN (r=0.19). Inhibition of TGF-beta type I receptor signalling in osteochondral tissues led to a drastic reduction of Pro-Collagen-Ia and IL-6 secretion in both spine and knee OA specimens. Interestingly, DMOAD treatment significantly reduced OSM, TIMP1 and MMP3 levels in FJ specimens only. Vice versa, KJ tissue revealed a specific upregulation of monocyte chemoattractant protein-1 (MCP-1) and osteopontin (SPP1) upon inhibition of TGF-beta signalling. OSM was exclusively expressed in subchondral bone marrow macrophages. Isolated chondrocytes and osteoblasts expressed both LIFR and OSMR, yet intact cartilage only showed OSMR expression, while OSMR and LIFR was expressed in marrow tissue.

Conclusion: Oncostatin-M expression and signalling was uncovered as specific pathomechanism of spine OA. DMOAD treatment effects suggested interplay of OSM and TGF-beta signalling pathways in facet joint osteoarthritis. Known to be predominantly expressed by macrophages and immune cells, OSM may be an important osteoimmunological mediator of tissue damage and remodelling in spine, but not knee OA. This study also highlights the value of ex vivo human tissue models for OA phenotyping and preclinical evaluation of DMOADs.

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2021-eular.2493
Although absent from healthy adult articular cartilage, our initial studies identified high expression levels of ROR2 in chondrocytes from patients with OA, suggesting a role in the disease process.

Objectives: To test the potential of ROR2 blockade as a disease-modifying treatment for OA.

Methods: Human cartilage organoid model in nude mice, menisco-ligament injury (MLI) model of OA in mice, behavioural studies, in vitro studies in cells.

Results: ROR2/WNT5A signaling was increased in osteoarthritic cartilage. Blocking ROR2 was sufficient to induce articular chondrogenesis and suppress expression of aggrecanases in a mesenchymal stem cell line, and to support cartilage formation in a human cartilage organoid model in nude mice using primary chondrocytes from patients with OA.

In the MLI model of OA, blocking ROR2 in therapeutic regime using atelocollagen-conjugated siRNA resulted in reduced cartilage destruction and in rapid and sustained pain relief. Due to the limited expression pattern of ROR2 in adulthood, multiple injections of siRNA conjugated to atelocollagen every 5 days. Preliminary efficacy data of potentially longer-acting ROR2 blockers are promising.

The mechanism of action of ROR2 blockade was independent of modulation of canonical Wnt signaling. ROR2/WNT5A promoted nuclear localization of YAP, which required both Rho and G-proteins. YAP signaling downstream of ROR2 also required Rho, but not G-proteins. YAP and TEAD inhibition was required, but not sufficient, for the chondrogenic effect of blocking ROR2. Therefore, additional, yet unknown mechanisms must be involved downstream of ROR2.

Conclusion: ROR2 blockade has potential as a disease-modifying treatment for OA, resulting in cartilage protection and rapid and sustained pain relief in a murine model. This will be crucial for clinical success of any treatment for OA and promote patient compliance. Our current siRNA-atelocollagen based technology requires IA injections too frequently to promote patient compliance. We are developing ROR2 blockade which can be administered systemically or IA not more often than every 3 months - work funded by FOREUM.

REFERENCES:

Acknowledgements: We gratefully acknowledge funding support of this work by the Medical College of St Bartholomew’s Hospital Trust, the William Har-