The drugs of choice were calcium nVoidarin (Fraxiparin) 0.3 or 0.6 ml subcutaneously - depending on body weight, respectively, or Dabigatran etexilate (Pradaxa) 220mg per day, or rivaroxaban (Xarelto) 10mg per day.

Prevention of infectious complications. The first injection of antibiotic is carried out immediately before surgery achieve it's maximum concentration in blood plasma just in the time of first incision. In the postoperative period, antibiotic therapy was carried out for at least 5 days. In 1 patient, the course of antibiotic therapy was prolonged and another broad-spectrum antibiotic was added due to a history of tuberculosis infection. Postoperative rehabilitation in patients with SLE met standard protocols: activation in bed and vitalization was carried out on day 1, standing with crutches and walking on day 2.

Conclusion: During the period of hospital stay in the early postoperative period, not a single one thromboembolic event developed, as well as no cases of infection with only limited data on efficacy/effectiveness of the initial and repeat cycles of RTX on extra-glandular pSS.

Disclosure of Interests: None declared DOI: 10.1136/annrheumdis-2021-eular.3031

Table 1. MVA logistic regression of risk factors for RTX non-response

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Continued Response</th>
<th>Non-response within 2 RTX Cycles</th>
<th>Univariable OR (95% CI); p-value</th>
<th>Multivariable OR (95% CI); p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD)</td>
<td>55 (14)</td>
<td>52 (12)</td>
<td>0.87 (0.53-1.41); Excluded from per 10 years</td>
<td></td>
</tr>
<tr>
<td>Disease duration, median (IQR)</td>
<td>5 (2-9)</td>
<td>6 (3-9)</td>
<td>0.97 (0.83-1.08); final model</td>
<td></td>
</tr>
<tr>
<td>Concomitant IS, %</td>
<td>81.5%</td>
<td>30.8%</td>
<td>0.10 (0.02-0.46); 0.07 (0.01-0.52); 0.003</td>
<td></td>
</tr>
<tr>
<td>IgG, mean (SD), g/L</td>
<td>15.5 (6.3)</td>
<td>18.4 (5.8)</td>
<td>1.08 (0.97-1.20); 1.13 (0.97-1.22); 0.175</td>
<td></td>
</tr>
<tr>
<td>Clinical ESSDAI, median (IQR)</td>
<td>Clinical ESSDAI, median (IQR)</td>
<td>10 (6-16)</td>
<td>8 (6-10)</td>
<td>0.96 (0.85-1.08); 0.91 (0.79-1.05); 0.185</td>
</tr>
<tr>
<td>Baseline plasma blast, x1000, median (IQR)</td>
<td>2.6 (1-5.2)</td>
<td>2.3 (1.9-6.5)</td>
<td>1.00 (0.84-1.27); Excluded from 0.885</td>
<td></td>
</tr>
<tr>
<td>Complete B-cell depletion post-RTX, %</td>
<td>55.6%</td>
<td>8.5%</td>
<td>0.07 (0.01-0.64); 0.04 (0.02-0.82); 0.018</td>
<td></td>
</tr>
<tr>
<td>0.036</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disclosure of Interests: Sophani Pepple: None declared, Jack Arnold: None declared, Edward Vital Grant/research support from: Dr Vital has received honoraria and research grant support from Roche, Andrew Rawstron: None declared, Colin Pease: None declared, Shouvik Dass Grant/research support from: Dr Dass has received honoraria from Roche, Paul Emery Consultant of: Professor Emery has received consultant fees from Roche, Grant/research support from: Professor Emery has received research grants paid to his employer from Roche., Md Yuzaiful Md Yusof: None declared DOI: 10.1136/annrheumdis-2021-eular.3266

AB0293 IDENTIFYING PREDICTORS OF SHORT-TERM RESPONSE TO RITUXIMAB IN PRIMARY SJOGREN'S SYNDROME

S. Pepple1, J. Arnold, E. Vita2, A. Rawstron, C. Pease1, S. Dass3, P. Emery1, M. M. M. Yousof1, M. Y. M. D. Yusof1,3, University of Leeds, Leeds Institute of Rheumatologic and Musculoskeletal Medicine, Leeds, United Kingdom; 1University of Leeds, Leeds Institute of Rheumatologic and Musculoskeletal Medicine, Leeds, United Kingdom; 2Leeds Teaching Hospitals NHS Trust, NHR Leeds Biomedical Research Centre, Leeds, United Kingdom; 3Leeds Teaching Hospitals NHS Trust, Haematological Malignancy Diagnostic Service, Leeds, United Kingdom

Background: Randomised controlled trials of rituximab (RTX) in primary Sjögren's syndrome (pSS) have aimed to alleviate glandular symptoms and fatigue with only limited data on efficacy/effectiveness of the initial and repeat cycles of RTX on extra-glandular pSS.

Objectives: To assess the effectiveness of RTX on extra-glandular symptoms and identify predictors of short-term response with a view to personalised B-cell depleting therapy in patients with pSS.

Methods: An observational study was conducted in 40 consecutive RTX-treated pSS patients in a single centre for over 15 years. All patients fulfilled the 2002 AEG criteria and were CCP negative. Clinical response at 6 months was defined as ≥3 reduction of ESSDAI from baseline. B-cell subsets were measured using highly sensitive flow cytometry. Predictors of short-term response were analysed using penalised logistic regression.

Results: 38/40 (95%) patients were female, mean (SD) Age 54 (13.7) years, median (IQR) disease duration 5 (2-9) years, 39 (98%) had positive ANA, 26/40 (65%) were on concomitant immunosuppressant (IS). Mean (SD) ESSDAI at RTX initiation was 11.5 (6.7); main domains for RTX were articular (73%), skin (23%), PNS (15%) and muscular (15%). 169 RTX cycles were administered with a total follow-up of 165PY. In Cycle 1 (C1) RTX, the proportion of patient achieving ESSDAI response from baseline was 29/40 (73%; 95% CI 26/40 (65%) were on concomitant IS. Mean (SD) ESSDAI at RTX initiation was 11.5 (6.7); main domains for RTX were articular (73%), skin (23%), PNS (15%) and muscular (15%), 169 RTX cycles were administered with a total follow-up of 165PY. In Cycle 1 (C1) RTX, the proportion of patient achieving ESSDAI response from baseline was 29/40 (73%; 95% CI 29/40 (73%); 95% CI 58-87). There were significant reductions in ESSDAI, daily prednisolone dose and IgG levels at 6 months (all p<0.05). Of C1 responders, 23/29 received retreatment on clinical relapse; of which 8/23 (35%) lost response (secondary non-depletion non response (2NDNR) associated with anti-RTX antibodies (17%) as we previously observed in SLE1, side effects=2, ineffective=2). Of C1 non-responders, 9/11 were retreated but only 2/9 responded in C2. Overall, 13/40 (33%) discontinued RTX within two cycles. In multivariable analysis, concomitant IS and achieving competitive B-cell depletion in C1 reduced non-response to RTX (Table 1).

Conclusion: All pSS patients should be prescribed concomitant immunosuppressant with RTX and therapy should aim to achieve complete depletion. About 1 in 6 pSS patients lose response in repeat cycles which is associated with 2NDNR phenomenon. The use of humanised or type 2 anti-CD20mAbs should overcome these issues and improve the clinical response of extra-glandular pSS.

REFERENCES:
1. Md Yuzaiful Md Yusof et al. ARD 2017 (2520 characters – allowed around 2600 as Table 1 is included too.)

AB0294 PREDICTORS OF CHLOROQUINE AND DERIVATES TREATMENT INVOLVING OCULAR TOXICITY: RESULTS FROM A COHORT

R. Dos-Santos1, D. Fernandez Fernandez2, J. Gonzalez Fernandez2, M. Sanchez-Wonenburger, P. Castro-Santamaria1, A. Souto Vilas1, E. Perez-Pampin, A. Mera Varela1, 1Clinical University Hospital Santiago de Compostela, Rheumatology Department, Santiago de Compostela, Spain

Background: Chloroquine (CQ) and hydroxychloroquine (HCQ) have been employed in a huge range of indications, from autoimmune diseases (such as rheumatoid arthritis [RA], cutaneous lupus or systemic erythematosus lupus [SLE]) to infectious ones (as malaria or helminthiasis).1 A newer purpose came upon the new coronavirus disease 2019 (COVID-19), where they seem to be effective modulating immune response. Controversial results have been published from clinical and observational data concerning its effectiveness.2 Ocular toxicity have been described as a serious adverse event of both anti-malarial drugs and screening protocols have been displayed for its prevention.3

Objectives: To evaluate CQ/HCQ ocular toxicity and to identify potential predictors of appearance. Also to assess screening protocols compliance.

Methods: Demographic, diagnostic and treatment data were collected from patients under CQ or HCQ treatment in the Clinical University Hospital in Santiago de Compostela (Spain) during the first wave of the COVID-19 pandemic (January to April 2020).

Univariable logistic regression was performed to identify potential predictors of maculopathy. Variables with p<0.20 were selected for multivariable testing. Stata 15.1 was used to perform statistical analysis.

Results: 503 patients taking CQ/HCQ were identified. 495 were women. Most frequent diagnosis were SLE (48.28%), cutaneous lupus (22.85%) and rheumatoid arthritis (RA, 12.54%). Mean age at diagnosis was 44.99 years (SD 17.88). 93.33% of patients were under treatment with CQ/HCQ treatment was 48.10 years (SD 17.79) and mean time between diagnosis and CQ/HCQ onset was 2.03 years (SD 5.50). Mean maximum HCQ dosage per patient was 3.83mg/kg (SD 1.59, 252.57mg per day, SD 89.98) and CQ was 3.24mg/kg (SD 1.91, 219.49mg per day, SD 103.90). Mean time under CQ/HCQ treatment was 6.59 years (SD 5.63), 20 patients developed maculopathy. Mean time between CQ/HCQ onset and maculopathy appearance was 2.67 years (SD 3.10). Only 25 patients did not complete ophthalmologic exams for maculopathy screening.

After univariable analysis, higher age at diagnosis and age at beginning of CQ/HCQ treatment were identified as potential predictors of maculopathy (p<0.20). After multivariable analysis, both higher age at diagnosis and higher age at CQ/HCQ onset were identified as predictors for suffering maculopathy under treatment with CQ/HCQ (OR 1.06 [CI95% 1.03-1.10] p=0.000 and OR 1.09 [CI95% 1.02-1.16] p=0.008, respectively.)

Conclusion: Ocular toxicity remains as one of the most harmful and disabling adverse events in patients under CO/HQO treatment. Higher age at diagnosis and higher age at beginning of treatment appear to be risk factors for maculopathy appearance. Screening protocols are well-assumed by patients and seemed to be helpful for preventing and early identifying events. CO/HQO usage in COVID-19 patients should be individualized, specially in older patients, and protocols involving ocular toxicity should be implemented in the follow-up of this population.

REFERENCES:

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2021-eular.3278

---

TREATMENT OF HIGH RISK/REFRACTORY OBSTETRIC ANTIPHOSPHOLIPID SYNDROME. A SINGLE CENTRE EXPERIENCE


Background: The most efficacious strategy to manage pregnant patients with antiphospholipid syndrome (APS) who are at high risk of adverse pregnancy outcomes is refractory to conventional heparin/low-dose aspirin treatment is currently unknown (1, 2).

Objectives: The purposes of this study were to investigate the efficacy and safety of a second-line treatment protocol administered in addition to twice daily low molecular weight heparin and low-dose aspirin to pregnant patients affected with high-risk refractory primary APS.

Methods: Patients were included in the study if satisfying the following criteria were: 1) the presence of triple antiphospholipid antibody positivity (IgG/IgM anti-cardiolipin + IgG/IgM anti-β2 Glycoprotein I antibodies + lupus anticoagulant), 2) previous thrombosis and/or a history of one or more early and severe pregnancy complications. The second-line treatment protocol included weekly plasmapheresis.

Results: Twenty-four pregnancies occurring between 2002 and 2019 in 19 primary APS patients (mean age 35.1 ± 3.5 SD) were monitored. Triple antiphospholipid positivity was detected in all 19 cases (100%). Seven of these women (36.8%) had a history of thrombosis, five (26.3%) one or more failed pregnancies associated with high-risk refractory primary APS.

Conclusion: This study preliminarily reported transient positivity of anti-SSA, anti-Ro52, and anti-mitochondrial M2 in rheumatic patients maybe because the passive transfer of these antibodies from IVIG products to the patients, although the potential influence of this transfer on the rheumatic diseases remained unknown.

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2021-eular.3449

---

PASSIVE TRANSFER OF ANTI-SSA, ANTI-Ro52, AND ANTI-MITOCENTRONE M2 FROM INTRAVENOUS IMMUNOGLOBULIN PRODUCTS TO PATIENTS WITH RHEUMATIC DISEASES

L. J. Yang1, H. G. Li1, A. Q. Zeng2, Z. M. Ouyang1, X. N. Wei1, Q. H. Li1, D. H. Zheng3, L. Dai1, Y. Mo1, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Department of Rheumatology, Guangzhou, China

Background: Passive transfer of ANA and anti-SSA has been reported in patients with common variable immunodeficiency disorder who received intravenous immunoglobulin (IVIG). IVIG is also recommended to treat some special or life-threatening rheumatic diseases.

Objectives: This study was aimed to explore whether any extractable nuclear antibodies (ENA) were transferred to these rheumatic patients who received IVIG therapy.

Methods: IVIG products of three batches were tested for ANA by using indirect immunofluorescent assay, and for ENAs by using line immunoassay (LIA) and chemiluminescence immunoassay (CLIA). These IVIG products were administered to rheumatic patients at a dose of 20g/d×3 days (day1 to day3). Serum samples of these patients before IVIG (day0) and after IVIG (day4, day8, day10, day12, and more than one month) were tested by using LIA and CLIA. Anti-SSA was also detected using ELISA.

Results: In these IVIG products, ANA was positive at a titer of 1:640 (cytoplasmic speckled) and 1:80 (speckled). Among 14 types of ENAs that could be tested using LIA, anti-SSA, anti-Ro52, anti-mitochondrial M2, and anti-centromere B antibodies were clearly detectable in IVIG products (Table 1). Likewise, another assay CLIA also detected the same positive autoantibodies in these products. LIA showed the highest concentration in anti-mitochondrial M2, while CLIA showed the highest concentration in anti-mitochondrial M2 and anti-Ro52. One 31-year-old male patient who was diagnosed as SLE (Figure 1) and one 72-year-old male patients who was diagnosed as nomenclatosis myositis received these IVIG products. Anti-SSA, anti-Ro52, anti-mitochondrial M2, but not anti-centromere B, were positive in the day4 serum samples, although all of these antibodies were negative at baseline (day0). The concentration of these antibodies decreased gradually as days passed and became undetectable around one month after IVIG.

Table 1. The concentration of autoantibodies in intravenous immunoglobulin products

<table>
<thead>
<tr>
<th>Anti-SSA</th>
<th>anti-Ro52</th>
<th>anti-mitochondrial M2</th>
<th>anti-centromere B</th>
<th>Cut-off</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIA (grey value)</td>
<td>20±3</td>
<td>28±3</td>
<td>60±10</td>
<td>19±4</td>
</tr>
<tr>
<td>CLIA (U/ml)</td>
<td>333±107</td>
<td>444±86</td>
<td>434±66</td>
<td>390±89</td>
</tr>
<tr>
<td>ELISA (U/ml)</td>
<td>90±13</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Conclusion: This study preliminarily reported transient positivity of anti-SSA, anti-Ro52, and anti-mitochondrial M2 in rheumatic patients maybe because the passive transfer of these antibodies from IVIG products to the patients, although the potential influence of this transfer on the rheumatic diseases remained unknown.

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2021-eular.3544

---

Figure 1. The concentration of autoantibodies in a 31-year-old male SLE patient receiving intravenous immunoglobulin at a dose of 20g/d×3 days (day1 to day3). Serum samples of these patients before IVIG (day0) and after IVIG (day4, day8, day10, day12, and day51) were tested by using line immunoassay (LIA) and chemiluminescence immunoassay (CLIA). Anti-SSA was also detected using ELISA. The horizontal red lines were the corresponding cut-off values of each assay.