levels, while gene expression of STAT3, STAT4, STAT5A, Jak1, Jak3 and all studied SOCSs was significantly suppressed. Baseline STAT phosphorylation levels in T cells and monocytes and SOCS3 expression in PBMCs correlated with treatment response.

Conclusion: Tofacitinib suppresses multiple Jak-STAT pathways in RA patients in vivo. Baseline Jak-STAT signaling profile may be applicable as a prognostic marker for treatment response to tofacitinib.

REFERENCES:

Acknowledgements: This study was supported by Pfizer Inc.

Disclosure of Interests: Maaria Palmrooth Consultant of: Pfizer and from 1/21 a part-time employee of MedEngine and consultant for Pfizer, Krista Kuukiala Grant/research support from: Pfizer, Ritta Peltomaa Speakers bureau: Boehringer Ingelheim, Pfizer, Sanofi, Paid instructor for: Boehringer Ingelheim, Eli Lilly and Company, Janssen, Abbvie, UCB Pharma, Amnina Virtanen: None declared, Antti Kuukiala: None declared, Antti Kurttia: None declared, Anna Kin-nunen: None declared, Marjatta Leirisalo-Repo: None declared, Olli Silvennoinen Speakers bureau: Pfizer, AbbVie, Pia Isomaki Speakers bureau: Abbvie, Eli Lilly and Company, Pfizer, Roche, Paid instructor for: Abbvie, Eli Lilly and Company, Pfizer, Roche, Grant/research support from: Pfizer DOI: 10.1136/annrheumdis-2021-eular.448

AB0251
CREASED ACCUMULATION OF ERYTHROCYTE METHOTREXATE POLYGLUTAMATES DURING EARLY PHASE SUBCUTANEOUS VERSUS ORAL METHOTREXATE TREATMENT OF RHEUMATOID ARTHRITIS PATIENTS

R. Hebing1,2, I. Muller2, M. Lin2, S. Mahmoud2, S. Heil2, W. Lems1,2, M. Nurmmohamed1,2, R. De Jonge2, G. Jansen2, R. Reade, Rheumatology, Amsterdam, Netherlands; 2 Amsterdam UMC, Location VUMc, Rheumatology, Amsterdam, Netherlands; 3 Amsterdam UMC, Location VUMc, Clinical Chemistry, Amsterdam, Netherlands; 4 Erasmus MC, Clinical Chemistry, Rotterdam, Netherlands

Background: Optimal dosing of methotrexate (MTX) for individual rheumatoid arthritis (RA) patients to achieve adequate disease control is an ongoing challenge. Assessment of erythrocyte MTX-polyglutamates (PGs) levels has been employed as a tool to monitor clinical response of RA patients in the first 3-12 months of treatment and MTX-PG2-4 and total MTX-PGs were associated with a decrease in MTX-PGs early on in the treatment of RA patients with MTX and demonstrated significantly higher accumulation of MTX-PGs following subcutaneous versus oral MTX administration. Early phase erythrocyte MTX-PG analyses may hold potential for positioning in optimizing individual patient MTX dose scheduling.

OBJECTIVES: To investigate the pharmacokinetics and -dynamics of erythrocyte MTX-PG accumulation in RA patients receiving oral or subcutaneous MTX in the early phase (1, 2, and 3 months) of MTX treatment initiation.

Methods: In a clinical prospective cohort study (MeMo study (NTR7149)), newly diagnosed RA patients were administered oral (n=24) or subcutaneous (n=22) MTX, mostly according to the COBRA-light schedule (start 10mg MTX, increased to 25mg MTX in 8 weeks). At 1, 2, and 3 months after start of therapy, blood was collected and individual MTX-PGs (MTX-PG1–MTX-PG6) were analyzed in erythrocytes at a minimal detection limit of 1 nmol/L, using a validated UHPLC-MS/MS method with labeled internal standards. Dosing, concomitant treatments and DAS28-ESR assessments were in conformity with clinical practice. Adverse events were recorded.

Results: 46 consecutive patients were included in this study; 76% female, mean age: 57.8 years, BMI: 25.8, 20% smokers, mean baseline DAS28-ESR: 3.8. Notwithstanding marked interpatient variability, patients starting subcutaneous MTX had accumulated significantly higher (approximately 2-fold) long chain MTX-PGs (MTX-PG1-6) when compared to patients in the oral MTX group at 1 and 2 months (Figure 1A, Table 1). Similarly, MTX-PG4-6 and MTX-PG6 accumulation were higher in subcutaneous MTX-users at month 1 (p=0.022 and p=0.011) compared to the oral group (median 68.6 nmol/L (IQR:40.5) vs 51.9 (55.6) and 17.4 (11.1) vs 11.2 (15.6), respectively (Figure 1B, Table 1).

Conclusion: This study shows the feasibility of measuring erythrocyte MTX-PGs early on in the treatment of RA patients with MTX and demonstrated significantly higher accumulation of MTX-PGs following subcutaneous versus oral MTX administration. Early phase erythrocyte MTX-PG analyses may hold potential for positioning in optimizing individual patient MTX dose scheduling.

REFERENCES:

Acknowledgements: We would like to thank all participating patients and Pfizer (grant 53239366 / WI230458).

Disclosure of Interests: Renske Hebing Grant/research support from: Pfizer, Ittai Muller: None declared, Marry Lim: Non declared, Sohaila Mahmoud: None declared, Sandra Heil: None declared, Willem Lems: None declared, Michael Nurmmohamed: None declared, Robert De Jonge: None declared, Gerrit Jansen: None declared. DOI: 10.1136/annrheumdis-2021-eular.525

AB0252
EFFICACY OF A SECOND JANUS KINASE INHIBITOR THAT WAS SWITCHED FOR DIFFICULT-TO-TREAT RA IN CLINICAL PRACTICE

M. Kamiya1, D. Togawa2, S. Mori1, K. Yamazaki2, 1 Nara Hospital, Kindai University, Orthopedic Surgery and Rheumatology, Ikoma-City, Japan; 2 Nara Hospital, Kindai University, Orthopaedic Surgery and Rheumatology, Ikoma-City, Japan

Background: In clinical practice, when refractory rheumatoid arthritis (RA) is present, of which the definition implies previous use of at least two biologic disease-modifying antirheumatic drugs (bDMARDs) (generally tumour necrosis factor inhibitors (TNFis)), the next treatment choice often made is a bDMARD of another class (non-TNFis) [1]. However, patients who are inappropriately responding to bDMARDs need new treatment options because subsequent bDMARDs treatment reduces their response [2]. Janus Kinase inhibitors (JAKis) are the first targeted synthetic DMARDs (tsDMARD) licensed for the treatment of RA with comparable efficacy to bDMARDs. Unlike the single cytokine targeting approach of bDMARDs, JAKis are specifically designed to inhibit intracellular signalling molecules common to the receptors of multiple inflammatory cytokines implicated in RA pathogenesis. The choice of therapeutic agents for refractory RA is increasing, and its efficacy is expected. On the other hand, it is also true that some patients discontinued JAKis at a rate that cannot be overlooked because...
of insufficient efficacy. Difficult-to-treat (D2T) RA is defined as refractory to two or more b/ts DMARDs with different mechanisms of action, with active and progressive disease, as published by Eular(3)

Objectives: To investigate the real-world efficacy of approved JAKis switching in patients with D2T RA who were unable to control their disease activity due to insufficient efficacy despite the sequential use of multiple b/ts DMARDs and JAKis, focusing on the drug retention rate.

Methods: In our hospital, RA was diagnosed according to the 1987 or 2010 classification criteria, and when two or more b/ts DMARDs (including both TNFis and non-TNFis) were ineffective, it was defined as D2T RA. We retrospectively investigated patients who switched to JAKis for D2T RA. The drug retention rate was investigated by the Kaplan-Meier method, and the difference was tested by the Logrank test.

Results: The 1-year retention rate of JAKis for D2T RA was 50.8% in TOF 38 cases [28 women, age average 70.2 years, disease duration average 12.4 years, past b/ts DMARDs use average 3.5 drugs, MTX combination 9 cases, DAS28 ESR average 4.11] and 66.3% in BAR 35 cases [26 cases, 73.0 years old, 14.8 years, 4.17 agents, 3 cases, 3.68], and there was no significant difference (P = 0.30). Among them, there were 17 cases [11 cases, 70.6 years old, 13.5 years, 4.18 drugs, 2 cases, 3.65] of switching between JAKis, all of which were switching from TOF to BAR. The 1-year retention rate was 45.8% [reason for discontinuation: insufficient effect in 3 cases, adverse events in 6 cases], which was not significantly different but tended to be lower than 72.7% [reason for discontinuation: insufficient effect in 1 case, adverse event in 2 cases, patient's convenience in 1 case] in 16 patients [13 cases, 76.3 years old, 171.7 years, 3.19 drugs, 7 cases, 3.69] who received BAR as the first JAKi for D2T RA patients (P = 0.089).

Conclusion: Although the number of cases is small in the retrospective survey, it is suggested that the retention rate of BAR switched to D2T RA may be slightly lower in patients with a history of TOF discontinuation due to insufficient efficacy than in JAKi naive patients. It is expected that the number of new JAKi usage cases will increase in the future, and it is necessary to consider switching between other JAKis in addition to switching from BAR to TOF.

References:
[1] Keio University School of Medicine, Department of Preventive Medicine, Tokyo, Japan; Toho University Ohashi Medical Center, Department of Rheumatology, Department of Internal Medicine, Tokyo, Japan; Nippon Medical School Graduate School of Medicine, Department of Allergy and Rheumatology, Tokyo, Japan; National Hospital Organization Tokyo Medical Center, Department of Connective Tissue Diseases, Tokyo, Japan; Tokohu University Graduate School of Medicine, Department of Hematology and Rheumatology, Sendai, Japan; Chiba University Hospital, Department of Allergy and Clinical Immunology, Chiba, Japan; Kawasaki Municipal Kawasaki Hospital, Department of Internal Medicine and Center for Arthritis and Rheumatic Disease, Kawasaki, Japan; Tokai University School of Medicine, Department of Internal Medicine, Isehara, Japan; Hiroshima University Graduate School of Medicine, Department of Rheumatology, Hamamatsu, Japan; Hiroshima University Hospital, Department of Clinical Immunology and Rheumatology, Hiroshima, Japan; Fujita Health University School of Medicine, Division of Rheumatology, Department of Internal Medicine, Aichi, Japan; Nagoya University Graduate School of Medicine, Department of Orthopedic Surgery, Nagoya, Japan; Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Department of Rheumatology, Department of Internal Medicine, Seoul, Korea, Rep. of (South Korea); Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Department of Rheumatology, Department of Internal Medicine, Seoul, Korea, Rep. of (South Korea); Gachon University College of Medicine, Gil Medical Center, Division of Rheumatology, Department of Internal Medicine, Gachon University, Incheon, Korea, Rep. of (South Korea); Seoul National University Bundang Hospital, Division of Rheumatology, Department of Internal Medicine, Seongnam, Korea, Rep. of (South Korea); Chungbuk National University, Department of Internal Medicine, Cheongju, Korea, Rep. of (South Korea); Chungnam National University College of Medicine, Department of Internal Medicine, Daejeon, Korea, Rep. of (South Korea); National Taiwan University Hospital, Department of Internal Medicine, Taipei, Taiwan, Republic of China; Chang Gung Medical Foundation, Linkou Chang Gung Memorial Hospital, Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Taoyuan, Taiwan, Republic of China; China Medical University Hospital, Division of Rheumatology and Immunology, Department of Internal Medicine, Taoyuan, Taiwan, Republic of China; Kaohsiung Medical University Chung-Ho Memorial Hospital, Division of Allergy, Immunology, and Rheumatology, Kaohsiung, Taiwan, Republic of China; Chang Gung Medical Foundation, Kaohsiung Chang Gung Memorial Hospital, Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Kaohsiung, Taiwan, Republic of China; Keio University School of Medicine, Department of Preventive Medicine and Public Health, Tokyo, Japan

Background: Methotrexate (MTX) is the first-line therapy for rheumatoid arthritis (RA). The concentrations of MTX-polyglutamates (PG) in erythrocytes, an active form of MTX, are useful markers for the optimal usage of MTX in patients with RA. The concentrations of MTX-PG have been reported to be different between Japanese and Caucasians. However, the difference among Asian ethnicity remains unclear.

Objectives: To examine MTX-PG concentrations in association with MTX dose during the first 24 weeks after the initiation of MTX for newly diagnosed RA patients in Japan, Korea, and Taiwan.

Methods: MIRACLE study is a multicenter, open-label, randomized, 48 weeks interventional study conducted in Japan, Korea, and Taiwan to evaluate non-inferiority of low dose to high dose of MTX as an add-on therapy to adalimumab in 300 patients with RA who do not achieve remission after 24 weeks of MTX monotherapy in stipulated dosage, in the first 24 weeks, MTX was started at low dose MTX for newly diagnosed RA patients in Japan, Korea, and Taiwan, 15 mg/week, which was escalated to a tolerable dose in 12 weeks in principle. This interim data evaluation was intended to investigate the differences among countries in the relationship between MTX dose, and MTX-PG concentrations in erythrocytes during the first 24 weeks. The efficacy of the treatment is not included at this point.

Results: A total of 166 patients (106 in Japan, 35 in Korea, 25 in Taiwan) were included in this interim data. The age at treatment initiation was 57.2 years old on average and female was 79.5%. The time course changes in total and individual MTX-PG levels differed in the three countries. At 24 weeks, whereas the mean total MTX-PG concentrations were comparable (112.9 nmol/L in Japan, 104.4 nmol/L in Korea, and 115.7 nmol/L in Taiwan) with a dose of MTX of 12.3 mg/week, 14.1 mg/week, and 12.2 mg/week, respectively, the individual MTX-PG concentrations were different. The MTX-PG1 and MTX-PG2 concentrations were lower in Korea than Japan and Taiwan whereas MTX-PG3, MTX-PG4 and MTX-PG5 concentrations were the highest in Korea.

Conclusion: The distribution of short-chain and long-chain MTX-PG concentrations were various among Asian countries despite similar dose of MTX administration.