provide important insights into divergent and shared mechanistic features of RA and serve as a template for future studies to guide drug tar-get discovery by synovial molecular signatures and de-sign stratified approaches for patients with RA.

REFERENCES:

Acknowledgements: This project was supported by National Science Foundation of China (82001740), Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020B078).

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.1970

OP0185

RADIOGRAPHIC PROGRESSION DESPITE PERSISTENT LDA OR REMISSION IS INFLUENCED BY CURRENT SMOKING RATHER THAN THE RESPECTIVE DAS28 LEVEL. RESULTS OF THE SWISS RHEUMATOID ARTHRITIS REGISTER (SCQM)

L. Brändli1,2, H. Schulze-Koops3, T. Högler4, M. J. Nissen5, H. Paul7, P. Muller8,1
1Division of Rheumatology, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland; 2Ludwig-Maximilians-University Munich, Division of Rheumatology and Clinical Immunology, Department of Internal Medicine IV, Munich, Germany; 3Ludwig-Maximilians-University Munich, Division of Rheumatology and Clinical Immunology, Department of Internal Medicine IV, Munich, Germany; 4University of Regensburg, University Hospital Lausanne (CHUV), Lausanne, Switzerland; 5Geneva university hospital, Rheumatology, Geneva, Switzerland; 6Kantonsspital Aarau, Division of Rheumatology, Medical University Department, Aarau, Switzerland

Background: The therapeutic aim for rheumatoid arthritis (RA) is to control disease activity and prevent radiographic progression. Various clinical scores are utilized to describe disease activity in RA patients. The DAS28 score can define states of low disease activity (LDA) and remission. Despite achieving LDA or remission, radiographic progression may nevertheless occur. However, the rates and frequency of this occurrence have not been analyzed in detail.

Objectives: To describe the frequency and rate of radiographic progression in patients with persistent LDA or remission.

Methods: Analysis of RA patients from the SCQM cohort. Persistent LDA or remission were defined as DAS 28 ≤3.2 or <2.6 respectively, at two subsequent follow up time points in the database. We included patients with at least two sets of radiographs within these intervals of LDA and/or remission. Radiographic progression was measured with the Ratingen-score (range 0-190), which describes joint erosions numerically. Repair was defined as an improvement in the Ratingen-score >5 points/year and progression as >2 or >5 points change in the Ratingen score within one year.

Results: Among 10'141 RA patients, 4'342 episodes of remission occurred in 3'927 patients with 1'776 sets of X rays available within these episodes. Similarly, 8'136 episodes of LDA in 6'765 patients and 2'358 sets of X rays were present within these intervals. For patients in LDA or remission, rates of repair were 5.5% and 4.8%, respectively, while for radiographic progression >5 points in the Ratingen score/year were 10.3% in both groups and for >2 points change of Ratingen score/year were 27.7 and 25.4%, respectively.

No differences for demographic factors or measures of disease activity, rheumatoid factor or ACPA were found comparing patients with radiographic progression or non-progression despite LDA or remission at the beginning of the episode of LDA and/or remission. Interestingly, 42.9% of patients in LDA with progression of >5 points in the Ratingen score/year were current smokers vs 29.4% among the non-progressors ($X^2 = 6.55, p = 0.01$). This significant difference vanished when the cut-off for radiographic progression was set at >2 points yearly change in Ratingen score or in patients in remission.

Conclusion: Radiographic progression despite LDA or remission are more frequent than expected. No differences in radiographic progression were found comparing LDA and remission suggesting that the goal of LDA is appropriate. Smoking seems to be an independent risk factor for radiographic progression despite LDA. Why the effect of smoking could was not demonstrated in patients in remission, remains unclear.

Disclosure of Interests: Lena Brandt: None declared, Hendrik Schulze-Koops: None declared, Thomas Hügel Consultant of: GSK, Abbvie, Pfizer, Jansen, Novartis, Eli Lilly, Michael J. Nissen Consultant of: Abbvie, Celgene, Eli-Lilly, Janssen, Novartis and Pfizer, Hasler paul Consultant of: Abbvie, Lilly, Rudiger Muller Consultant of: Abbvie, Novartis, Grant/research support from: Gebro DOI: 10.1136/annrheumdis-2021-eular.2557

Onco-rheumatology: the crossroads of cancer and musculoskeletal diseases.

OP0186

CHANGES IN CIRCULATING B CELL LEVELS AND IMMUNOPHENOTYPE ARE ASSOCIATED WITH DEVELOPMENT OF ARTHRITIS FOLLOWING TREATMENT WITH CHECKPOINT INHIBITORS

M. Gatsi1,2,3, S. Bjursten1,2, C. Jonell1, C. Jonsson1, S. Mograthi1, A. Rudin1, M. Levin1,2,3, I. Gjertsson1
1University of Gothenburg, Rheumatology and Inflammation Research, GOTHENBURG, Sweden; 2University of Padova, Unit of Rheumatology, Padova, Italy; 3University of Gothenburg, Oncology, Sahlgrenska University Hospital, GOTHENBURG, Sweden; 4University of Gothenburg, Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, GOTHENBURG,
Background: Inflammatory arthritis (IA) is frequent among rheumatic side effects induced by checkpoint inhibitor (CPI) therapy for metastatic malignancies. While T cells are likely to sustain the inflammatory process, fewer data are available concerning the role of B cells.

Objectives: To investigate the phenotype of circulating B cells in patients who develop CPI-induced IA (CPI-IA) and to compare it with features of B cells in patients not developing immune-related adverse events (irAE) upon CPI treatment.

Methods: B cell subsets at baseline (before CPI initiation) and during CPI treatment were analyzed in CPI-IA patients and in patients receiving CPI but who did not develop irAE (non-irAE). Peripheral blood mononuclear cells (PBMC) were analyzed by flow cytometry and B cells were identified as CD19+ and divided into naïve (CD27+IgD-), memory (CD27+IgD+), double negative (CD27-IgD-) and transitional (CD10+CD24+CD38+/hi) B cells. Levels of CD21, an activation marker on transitional B cells, were also analyzed. Non-parametric tests were used for analysis of differences between groups.

Results: Six CPI-IA and 7 non-irAE patients matched for age, gender and CPI treatment were included, who had received CPI treatment due to metastatic melanoma. Flow cytometry revealed a significant increase of circulating B cells (p=0.002) (Figure 1A) and especially of transitional B cells in CPI-IA patients vs. non-irAE (median %, range: 7.8 (4.5-11.4) vs. 3.2 (1.6-4.3); p=0.007) (Figure 1B), while no remarkable changes were seen across other subsets. Transitional B cell levels significantly decreased from active to quiescent CPI-IA in all patients (p=0.008). In two CPI-IA patients for whom baseline sampling was available, the increase of transitional levels occurred early after CPI treatment and before CPI-IA onset. Levels of expression of CD21 on transitional B cells were increased in CPI-IA vs. non-irAE (p=0.01).

Conclusion: Transitional B cells are expanded in CPI-IA patients and seem to increase early after start of CPI therapy. Monitoring this B cell subset might lead to closer follow-up and earlier diagnosis of CPI-IA.

REFERENCES:

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.908

Table 1. Patient demographics and baseline disease characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Patients with RA (N=8020)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SD)</td>
<td>59.3 (13.8)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>6816 (85.0)</td>
</tr>
<tr>
<td>Duration of RA (years), mean (SD)</td>
<td>12.8 (10.3)</td>
</tr>
<tr>
<td>Never smoked, n (%)</td>
<td>5086 (66.2)</td>
</tr>
<tr>
<td>JAS28, mean (SD)</td>
<td>2.8 (1.1)</td>
</tr>
<tr>
<td>J-HAQ, mean (SD)</td>
<td>0.60 (0.73)</td>
</tr>
<tr>
<td>Malignancy status, n (%)</td>
<td>467 (5.8)</td>
</tr>
<tr>
<td>Comorbid malignancy at baseline</td>
<td>386 (4.8)</td>
</tr>
<tr>
<td>Medication use, n (%)</td>
<td>468 (5.9)</td>
</tr>
<tr>
<td>MTX</td>
<td>6088 (75.9)</td>
</tr>
<tr>
<td>Tocilimus</td>
<td>787 (9.9)</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>2641 (32.9)</td>
</tr>
<tr>
<td>lDMDARD use</td>
<td>1508 (19.1)</td>
</tr>
<tr>
<td>TNF</td>
<td>1163 (14.5)</td>
</tr>
<tr>
<td>Tollzumub</td>
<td>311 (3.9)</td>
</tr>
<tr>
<td>Abatacept</td>
<td>106 (1.3)</td>
</tr>
<tr>
<td>JAK inhibitors</td>
<td>4 (0.5)</td>
</tr>
</tbody>
</table>

lDMDARD, biological disease-modifying antirheumatic drug; DAS28, Disease Activity Score in 28 joints; JAK, Janus kinase; J-HAQ, Japanese Health Assessment Questionnaire; MTX, methotrexate; N, the number of patients included in the analysis, the number of patients assessed for each characteristic may be fewer than N; n, the number of patients with each characteristic; SD, standard deviation; TNF, tumour necrosis factor inhibitor

Conclusion: Overall risk of malignancy was similar to that in the general Japanese population, although a significantly higher risk of lymphoma was identified.

REFERENCES:

Acknowledgements: Study sponsored by Pfizer Inc. Medical writing support was provided by Anthony G McCluskey, CMIC Connect, and funded by Pfizer Inc.

Disclosure of Interests: masayoshi harigai Speakers bureau: AbbVie Japan, Ayumi, Boehringer Ingelheim Japan, Bristol-Myers Squibb, Chugai, Eisai, Eli Lilly Japan, GliaxoSmithKline, Kissei, Pfizer Japan Inc, Takeda, Teijin, Consultant of: AbbVie Japan, Boehringer Ingelheim Japan, Bristol-Myers Squibb, Kissei, Teijin, Grant/research support from: AbbVie Japan, Asahi Kasei, Astellas, Ayumi, Bristol-Myers Squibb, Chugai, Daiichi-Sankyo, Eisai, Kissei, Mitsubishi Tanabe, Nippon Kayaku, Sekui Medical, Shionogi, Taiho, Takeda, Teijin, Naohiro Sugitani: None declared, Ryoko Sakai Speakers bureau: Bristol-Myers Squibb, Eisuke Inoue Speakers bureau: Pfizer Japan Inc, Bristol-Myers Squibb, Michika MOCHIZUKI Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Shigeyuki Toyoizumi Employee of: Pfizer Inc, R&D Japan, Nortoshi Yoshi Sharingo: Pfizer Inc, Employee of: Pfizer Inc, Naonobu Sugiyama Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Taiki Takada, Consultant of: Pfizer Inc, Mochida Pharmaceutical Co. Ltd, Pfizer R&D Japan, and participated in at least 2 surveys. Index was defined as the date of the first entry in the IORRA database, with baseline defined as the 6-month period prior to the index date. Malignancies were identified in pt reports of biannual IORRA surveys and confirmed using medical records. Age- and sex-standardised incidence ratios (SIRs) and 95% confidence intervals (CIs) were calculated.

Table:

OP0187 INCIDENCE OF MALIGNANCY IN JAPANESE PATIENTS WITH RHEUMATOID ARTHRITIS: DATA FROM THE JAPANESE IORRA PATIENT REGISTRY

M. Harigai, N. Sugitani, R. Sakai, E. Inoue, M. Mochizuki, S. Toyoiuzumi, N. Yoshi, N. Sugiyama, E. Tanaka, H. Yamakita, Tokyo Women’s Medical University School of Medicine, Department of Rheumatology, Tokyo, Japan; ²Showa University, Showa University Research Administration Center, Tokyo, Japan; ³Pfizer Japan Inc, inflammation and Immunology, Tokyo, Japan; ⁴Pfizer R&D Japan, Biometrics and Data Management, Tokyo, Japan; ⁵Sanno Medical Center, Tokyo, Japan