AB0078

LIPID IMMOBILIZATION AS A METHOD TO OBTAIN ANTIGENIC NANO-OBJECTS

O. Rusanova1, O. Emelyanova1,2, N. Emelyanov2. 1Federal State Budgetary Institution «Research Institute of Clinical and Experimental Rheumatology named after A.B. Zborovsky», 1, Borroraq, Russian Federation; 2Federal State Budgetary Educational Institution of Higher Education «Volgoograd State Medical University» of the Ministry of Healthcare of the Russian Federation, 2, Borroraq, Russian Federation

Objectives: Objective of the study is to research the effect of emulsion polymerization on active sites of cardiolipin antigen determinant in antiphospholipid syndrome (APS) in patients with systemic lupus erythematosus (SLE).

Methods: Having integrated antigen nanoobjects we developed immobilized magnetoselectable antigen nanosystems and put them to an experimental test. The nanosystems are polyacrylamide granules with a built-in antigen. To obtain stable immobilized multi-use biopharmaceuticals with targeted properties (shape, particle diameter, pore size, density) we used a modified version of emulsion polymerization method using polyacrylamide carrier gel. This method permitted a greater sorptive capacity, preserving the antigen in maximum native state, and opened up the possibility of controllable modification of nanoobjects.

Cardiolipin was used as the antigen in question.

Results: Following the method described above we performed sorption of anti-cardiolipin antibodies from blood plasma of SLE patients who showed clinical presentations of antiphospholipid syndrome. Blood serum from 10 apparently healthy individuals served as control. The level of cardiolipin antibodies was determined before and after sorption by indirect solid phase immunoenzyme method. In the eluate we estimated total protein by Lowry method. In vitro testing showed that the obtained antigen nanosystems based on immobilized cardiolipin could effectively remove cardiolipin antibodies from whole blood of SLE patients with clinical presentations of APS to achieve the values of healthy individuals (before sorption cardiolipin antibodies 0.328 ± 0.028; after sorption 0.059 ± 0.017; p=0.001; sorption capacity 8.60 ± 0.390 mg/ml).

Conclusion: The method of emulsion polymerization with consideration to hydrophobic and hydrophilic properties of lipid molecules permits obtaining and modifying biomolecules with certain properties, in a controlled fashion.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.770

AB0079

ENDOTHELIAL FUNCTION IN SYSTEMIC LUPUS ERYTHEMATOSUS PATIENTS: IMPACT OF CAFFEINE CONSUMPTION ON ENDOTHELIAL PROGENITOR CELLS

V. Orefice1, F. Cecarelli1, C. Barbati1, E. Putro1, C. Pirone1, F. R. Spinelli1, C. Alessandr1, F. Comi1. 1Lupus Clinic, Sapienza University of Rome, Rome, Italy

Background: As widely demonstrated, circulating endothelial progenitor cells (EPCs) could be considered biomarkers of endothelial dysfunction. Their frequency and function varied in systemic lupus erythematosus (SLE) patients, with a significant association with subclinical atherosclerosis. Caffeine, one of the most widely consumed products in the world, seems to interact with multiple components of the immune system by acting as a non-specific phosphodiesterase inhibitor. In terms of cardiovascular disease (CVD), data from the literature showed a U-shaped association between habitual coffee intake and CVD. In this view, Spyridopoulos et al. demonstrated a significant improvement in mature endothelial progenitor cells (EPCs) migration in relation to coffee consumption in coronary artery disease both in mouse models and in patients. Finally, caffeine seems to play a positive effect on SLE disease activity status, as demonstrated by the inverse association between its intake and SLE Disease Activity Index 2000 (SLEDAI-2K) and the serum levels of inflammatory cytokines. At the best of our knowledge, there are no data about the impact of caffeine on cardiovascular risk in SLE patients.

Objectives: The aim of this study was to evaluate the possible role of caffeine intake on endothelial function in SLE patients, by evaluating its effect on circulating EPCs.

Methods: We performed a cross-sectional study enrolling SLE patients, fulfilling the revised 1997 ACR criteria. According to the protocol study, we excluded patients with history of smoking, CVD, chronic kidney failure, dyslipidaemia, and/or diabetes. At enrollment, the clinical and laboratory data were collected and disease activity was assessed using the SLEDAI-2K. Caffeine intake was evaluated using a 7-day food frequency questionnaire, previously employed in SLE cohort. At the end of questionnaire filling, blood samples were collected. EPCs were isolated from peripheral blood mononuclear cells (PBMC) by flow cytometry analysis and they were defined as early EPCs CD34+KDR+CD133- cells and late EPCs CD34+KDR+CD133-, expressed as a percentage within the lymphocyte gate.

Results: We enrolled 19 patients (F/M=18:1, median age 45 years, IQR 15; median disease duration 240 months, IQR 168). In this cohort, we observed a significant association between habitual coffee intake and CVD. In this view, the majority of patients were receiving treatment with hydroxychloroquine (78.9%) and seven with glucocorticoids (36.8%). The median intake of caffeine was 163 mg/day (IQR 138) and we used this value as cut-off to categorize SLE patients in 2 groups: group 1 (N=10, caffeine intake ≤ 163 mg/day) and group 2 (N=9, caffeine intake > 163 mg/day). Patients with less intake of caffeine showed a significantly more frequent history of lupus nephritis (p=0.03), haematological manifestations (p=0.0003) and anti-dsDNA positivity (p=0.0003). Moving on EPCs, a positive correlation between caffeine intake and EPCs percentage was observed (p=0.04, r=0.4) (Figure 1A). Moreover, patients with more caffeine intake showed higher levels of early EPCs (p=0.02) (Figure 1B).

Conclusion: This is the first report analysing the impact of caffeine on EPCs frequency in SLE patients. We found a positive correlation between its intake and both early and late EPCs percentage, suggesting a caffeine influence on endothelial function in SLE patients. Nonetheless, these results support the possible impact of dietary habits on autoimmune diseases.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.1075

AB0080

ALTERED CONCENTRATIONS OF DIFFERENT SMALL EXTRACELLULAR VESICLE POPULATIONS IN PLASMA OF PATIENTS WITH ANTIPHOSPHOLIPID SYNDROME

U. Stok1,2, A. Shephard3, S. Cucu2,4, S. Sodin-Šemrl2,4, P. Zigon1,4. 1University Medical Centre Ljubljana, Department of Rheumatology, Ljubljana, Slovenia; 2University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia; 3NanoView Biosciences, Research and Development, Malvern, United Kingdom; 4University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Koper, Slovenia

Background: Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by thrombosis, obstetric complications, and the presence of antiphospholipid antibodies (aPL) that cause endothelial injury and thrombophilia. Extracellular vesicles (EVs) are involved in various thrombotic disorders [2], including APS [3, 4], and therefore may influence the prothrombotic status of APS patients. One of the hallmarks of activated endothelium is the expression of adhesion molecules, such as ICAM-1 (CD54) and E-selectin (CD62E), that play a key function in the interactions with leukocytes and platelets.

Objectives: To determine the level of total tetraspanin (CD81/CD63/CD9)-positive vesicles and specific EV populations (CD54- and CD62E-positive EVs) in plasma from APS patients.

Methods: Whole blood was collected from 4 APS patients and 3 healthy blood donors (HBDs) and processed to obtain platelet-depleted plasma. The size and concentration of EVs were determined using ExoView platform (NanoView

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.1224
SYSTEMIC LUPUS ERYTHEMATOSUS: A SYSTEMATIC ENDOTHELIAL MARKERS WITH DYSREGULATION IN (LONGITUDINAL COLLECTED) SAMPLES OF (CHILDHOOD ONSET) SLE PATIENTS, IN CROSS-SECTIONAL STUDIES. OUR FUTURE PLAN IS TO TEST THE IDENTIFIED ENDOTHELIAL MARKERS IN (LONGITUDINALLY COLLECTED) SAMPLES OF (CHILDHOOD ONSET) SLE PATIENTS, DISEASE- AND HEALTHY CONTROLS. THIS WILL BE A NEXT STEP IN UNRAVELLING THE PATHOPHYSIOLOGY OF PREMATURE ATHEROSCLEROSIS AND CARDIOVASCULAR EVENTS IN SLE-PATIENTS IN YOUNG ADULTHOOD.

Conclusion: Higher levels of sEVs and increased percentage of CD54- and CD62E-positive sEVs in plasma of APS patients could indicate an altered and activated endothelium in those patients.

REFERENCES:

Disclosure of Interests: Ula Stok: None declared, Alex Shephard Employee of: NanoView Biosciences, Sasa Cucnik: None declared, Snežna Sodin-Šemrl: Disclosure of Interests: [5]...[8]

Table 1.

<table>
<thead>
<tr>
<th>Endothelial marker</th>
<th>Articles (no. of studies)</th>
<th>Significant correlation with SLEDAI (no. of studies)</th>
<th>Studies with control groups (no. of studies)</th>
<th>Longitudinal data (no. of studies)</th>
<th>Yes</th>
<th>No</th>
<th>Unknown</th>
<th>Healthy controls</th>
<th>Diseased controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCAM-1</td>
<td>26</td>
<td>20</td>
<td>5</td>
<td>23</td>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEGF</td>
<td>22</td>
<td>13</td>
<td>5</td>
<td>20</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAM-1</td>
<td>18</td>
<td>11</td>
<td>5</td>
<td>17</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrombomodulin</td>
<td>17</td>
<td>10</td>
<td>5</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-Selectin</td>
<td>13</td>
<td>6</td>
<td>5</td>
<td>20</td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP-1</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Selectin</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP-10</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentraxin-3</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vWF</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neopterin</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fas</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angiopoietin-2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endothelin-1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAI-1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adrenomedulin</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWEAK</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PECAM-1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Concentration of tetraspanin- (CD81/CD63/CD9), CD54- and CD62E-positive sEVs in plasma of APS patients and HBDs.

CONCLUSION: The screening process is shown in figure 1. The search was performed according to the Preferred Reporting Items for Systematic review and Meta-analysis Protocols (PRISMA-P) 2015 (3). In July 2020, the search terms were used in Embase, MEDLINE, Web of Science, Google Scholar and Cochrane. Inclusion criteria were 1) published studies after the year 2000 that reported measurements of endothelial cell markers in serum and/or plasma of SLE patients (diagnosed according to ACR/SLICC criteria), 2) English language peer reviewed articles and 3) disease activity measurement (i.e. SLEDAI, BILAG, SLAM, ECLAM or PGA). Exclusion criteria were 1) case reports or editorials, 2) studies performed in animals and 3) studies with microRNA/cytokine biomarkers. There was no minimum count for study population.

REFERENCES:

5Ghent University, Internal Medicine, Gent, Belgium
4Ghent Centre (IRC), Unit for Molecular Immunology and Inflammation, Ghent, Belgium
3Ghent University, Cellular and Molecular Immunology, Gent, Belgium
2Faculty of Medicine, Ghent University, Gent, Belgium
1Amsterdam UMC, Paediatric Rheumatology, Amsterdam, Netherlands;
Erasmus MC, Paediatric Rheumatology, Rotterdam, Netherlands;
Ghent University, Internal Medicine, Gent, Belgium;
Ghent University Hospital, Rheumatology, Gent, Belgium;
VIB Inflammation Research Centre (IRC), Unit for Molecular Immunology and Inflammation, Ghent, Belgium

Background: Systemic lupus erythematosus (SLE) is a severe, lifelong autoimmune disease known for its multisystem organ involvement. SLE patients are known to be at risk for premature atherosclerosis at a relatively young age (1). Endothelial dysregulation is one of the pathophysiologic mechanisms that can lead to the higher risk for cardiovascular disease in SLE (2). Multiple endothelial markers with dysregulation in SLE have been described so far, of which some are associated with disease activity.

Objectives: To report a systematic literature review regarding endothelial markers that are dysregulated in SLE and search for associations with disease activity.

Methods: The search was performed according to the Preferred Reporting Items for Systematic review and Meta-analysis Protocols (PRISMA-P) 2015 (3).