PREDICTING RESPONSES TO ANTI-TNF TREATMENTS IN RHEUMATOID ARTHRITIS PATIENTS FROM GENETIC AND CLINICAL DATA USING A MACHINE LEARNING APPROACH

S. Ju1, M. Hudson2, I. Colmegna3, S. Bernatsky3, Y. Li1. 1McGill University, School of Computer Science, Montréal, Canada; 2 Jewish General Hospital, Rheumatology, Montréal, Canada; 3 MUHC Research Institute, Medicine, Montréal, Canada

Background: Tumor necrosis factor (TNF) inhibitors are key therapies in rheumatoid arthritis (RA). However, a third of patients fail to respond to these agents, and there are no reliable predictors for response. Predictive models, potentially based on clinical and genomic data, are vital to personalizing therapy. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) RA Responder Challenge invited research teams to create models for patient response to anti-TNF therapy. The winning model relied heavily on limited genetic input and was unable to correctly predict responses in a large number of individuals.

Objectives: We compared non-linear and linear analytic methods to predict response and non-response to anti-TNF treatment for RA patients in the DREAM database, using moth clinical variables and a large number of potential genome-wide predictors.

Methods: DREAM data on anti-TNF treated RA patients were accessed through Synapse (synapse.sagebase.org). Analogously to the DREAM challenge, we were provided with the clinical and genomic data of 2,706 patients with at least moderate disease activity according to their composite disease activity scores for 28 joints (DAS28). In contrast to the previous analysis that focused on single nucleotide polymorphisms (SNPs) based on existing knowledge of RA, we used the full genome-wide dataset of 2.5 million SNPs. We first reduced this to 284 SNPs by considering the marginal p-value of 0.001 for each SNP based on the most predictive features. Support Vector Regression (SVR) also operated curve (AUROC) of 0.63 to 0.67, i.e., 0.04 improvement. This AUROC of significant p-values if they were in linkage disequilibrium with the most significant

Results: The analysis of the discovery cohort and the DREAM registry including 2067 RA patients treated with TNFi revealed an overall association of the LINC02549 SPN with a decreased drop in DAS28 that remained significant after correction for multiple testing (per-allele OR$_{\text{het}}$ = 0.83, P_{Het} = 0.000077; P_{Het} = 0.61). In addition, the meta-analysis of these large cohorts showed that each copy of the LARRCC5 rs1771775 allele significantly decreased the drop in DAS28 in RF-positive patients (per-allele OR$_{\text{Het}}$ = 0.67, P_{Het} = 0.0058; P_{Het} = 0.06) whereas an opposite but not significant effect was found in RF-negative patients (per-allele OR$_{\text{Het}}$ = 1.38, P_{Het} = 0.10; P_{Het} = 0.0028; P_{Het} = 0.45). Interestingly, the meta-analysis also showed potentially interesting but not statistically significant overall and RF-specific associations for the MAFB rs677088 and CNTN5 rs531354SNPs with DAS28 (per-allele OR$_{\text{Het}}$ = 0.84, P_{Het} = 0.0099; P_{Het} = 0.63 and OR$_{\text{Het}}$ = 0.81, P_{Het} = 0.0058; P_{Het} = 0.69 and OR$_{\text{Het}}$ = 1.00, P_{Het} = 0.99; P_{Het} = 0.12; P_{Het} = 0.032). Although analysis of functional data is ongoing, so far, we found that carriers of the LARRCC5 allele showed decreased levels of IL6 after stimulation with BPECs with Borelia burgdorferi and Escherichia Coli bacteria (P = 0.00046 and 0.00044), which suggested a reduced IL6-mediated anti-inflammatory effect of this marker to worsen the response to TNFi.

Conclusion: This study confirmed the influence of the LINC02549 and LARRCC5 loci to determine the response to TNFi in RA patients and a weak effect of the MAFB and CNTN5 loci that needs to be further investigated.

REFERENCES:

Acknowledgements: We thank all participants who have agreed to participate in this study. Authors also thank Maria Dolores Casareas, Ângelo Molina, Carmen Oloriz for the collection of Spanish samples and Hans Jurgen Hoffmann, Marianne Thomsen, Vibike Ostergaard Thomsen, Malene Rohr Andersen, Lise Lotte B. Larsen, Helle Jørgensen, Ram Benny Christian Dessau, Niels Steen Krogh, Ulla Vogel, Paal Skytt Andersen, Ivan Brandstrup, Steffen Bank, Frederik Trier Møller, Nikolai Toft and Niels Møller Andersen for the participation in collection and purification of Danish samples. We also thank the Danish Departments of Rheumatology for their implication in the collection of clinical data from RA patients included in the DANBIO cohort and the Danish Rheumatologic Biobank. Likewise, we would like to thank Teun van Herwaarden for steroid hormone measurements in serum samples from subjects ascertained through the HFGP initiative.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2021-eular.2248
REFERENCES:

Figure.

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2021-eular.1107

DEFINING SYSTEMIC LUPUS ERYTHEMATOSUS MOLECULAR TAXONOMY THROUGH DATA-DRIVEN RESTRATIFICATION AND IDENTIFICATION OF CLUSTER-TAILORED DRUGS FOR A PERSONALIZED MEDICINE APPROACH

P. Garantziotis1,2, D. Nikolakis3, S. Doumas1, E. Fragou1, A. Fanourakis5, A. Fili1, T. Witte2, G. Bertias2, D. Bompas1,2,3Biomedical Research Foundation Academy of Athens, Athens, Greece; 2Center of Clinical, Experimental Surgery & Translational Research, Athens, Greece; 3Medical University Hannover, Department of Clinical Immunology and Rheumatology, Hannover, Germany; 4University of Amsterdam, Department of Experimental Immunology, Amsterdam, Netherlands; 5Asklepion General Hospital, Department of Rheumatology, Athens, Greece; 6University of Crete, Medical School, Department of Rheumatology, Clinical Immunology and Allergy, Crete, Greece; 7National and Kapodistrian University of Athens, Medical School, 4th Department of Medicine, Attikon University Hospital, Athens, Greece

Background: Systemic Lupus Erythematosus (SLE) is characterized by lack of treatment diversity, largely empirical treatment decisions, and paucity of novel compound development.

Objectives: We sought to stratify SLE patients based on their molecular phenotype and predict personalized therapeutic compounds, tailored to the molecular fingerprint of each subgroup.

Methods: We performed a co-expression analysis using our publicly available whole blood RNA-seq data of 120 SLE patients. Modules of commonly regulated genes were established and used to re-stratify patients through hierarchical clustering, in a data-driven, clinically independent, manner. Next, we established an in silico, subgroup signature-based, drug prediction pipeline. Investigated drugs included both those currently in practice and those who have been tested in SLE clinical trials and are listed in the iLINCS prediction databases. Finally, drug repurposing analysis was performed, to identify novel perturbagens that counter-act group-specific SLE signatures.

Results: Molecular taxonomy identified five distinct lupus molecular endotypes, each characterized by a unique gene module enrichment pattern. A group defined by strong neutrophil signature encompassed almost exclusively patients with active nephritis, while a B-cell expression group included patients with severe lupus phenotype. Metabolic processes enrichment defined a group of patients with disease of moderate severity and serologic activity. Finally, patients with mild lupus features were distributed in two groups which demonstrated enhanced basic cellular functions, myelopoiesis, and autophagy. The ability of different compounds to reverse the transcriptomic aberrances observed in each patient group was examined. Bortezomib efficiently reversed disturbances in the “neutrophilic” cluster. Azathioprine and iaxomib might be a reasonable option for patients of the ‘B-cell’ cluster, whereas fostamatinib appeared efficacious for the ‘Metabolism’ patient subgroup.

Conclusion: The clinical spectrum of SLE encompasses distinct molecular endotypes, each defined by unique pathophysiologic aberrances, which can be utilized to guide personalized care and direct novel compound development.

Acknowledgements: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 742390).

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2021-eular.1636

HOMEBOX D TRANSCRIPTION FACTORS SHAPE DIFFERENTIAL JIENVIRONMENT BETWEEN ANTERIOR FINGER JOINTS AND THUMB

M. Mirrahimi1, K. Klein1, M. Houtman1, M. Maciukiewicz1, M. Frank Bertoneci1, A. Juengel2, M. Berli3, M. Marks4, O. Distler5, C. Ospelt1, 1University Hospital of Zürich, Department of Rheumatology, Zürich, Switzerland; 2Universitätsklinik Balgrist, Research Rheumatology, Zürich, Switzerland; 3Universitätsklinik Balgrist, Technical Orthopedics, Zürich, Switzerland; 4Schulthess Klinik, Department of Research and Development, Zürich, Switzerland

Background: The expression of embryonic Homeobox (HOX) genes is tightly regulated based on anatomical location in human adult dermal and synovial fibroblasts. Previously, we showed that HOX-D10, -D11 and -D13 are higher expressed in synovial fibroblasts from small joint groups from the hands and feet, in particular in digits II-V and wrists compared to thumb and that this expression pattern is epigenetically imprinted. The consequences of the tightly restricted expression of these transcription factors are largely unknown.

Objectives: To elucidate the function of HOXD10, -D11 and -D13 in synovial fibroblasts.

Methods: Synovial tissues were isolated from paws of naïve C57BL/6 mice (n=8), from patients with rheumatoid arthritis (RA), osteoarthritis (OA) and from healthy controls. Synovial fibroblasts were cultured and transfected with GapmeR to silence HOXD10, -D11, and -D13, respectively or with control GapmeR. RNA sequencing was performed on the NovaSeq platform and pathway analysis was done using R packages and web-based tools (GSEA, EnrichR, Cytoscape). HOXD target gene expression was measured by qPCR (n=3–6).

Results: To confirm and further analyze the distinctive expression pattern of HOXD genes, we measured their expression in healthy synovial tissues of different joint groups of human feet and mouse paws. Similar to what we found in hands, HOXD10, -D11 and -D13 were less abundant in the joints of the first digit of human feet compared to digits II-V (n=3–4 in each joint). Measurements in joints of mouse paws showed lower expression of HOXD10, -D11 and -D13 in distal interphalangeal joints compared to proximal interphalangeal joints and metacarpophalangeal (MCP) joints, respectively. Silencing of HOXD10, -D11 and -D13, affected the expression of 5333, 2217 and 7347 genes, respectively, in cultured RA synovial fibroblasts from human wrists (n=3). There were more transcripts equally regulated by HOXD10 and -D13 (40% of all HOXD10 and 31% of all HOXD13 regulated transcripts), than by HOXD11 and either -D10 or -D13 (18% of all HOXD10 regulated genes and 16% of all HOXD13 regulated transcripts), suggesting most redundancy between HOXD10 and 31% of all HOXD13 regulated genes, respectively. Among genes differentially expressed in SF isolated from MCP II-V versus thumb joints, 19%, 4% and 33% were regulated by HOXD10, -D11 or -D13, respectively, supporting a role for HOXD13 in particular in shaping the joint specific environment. All three HOXD transcription factors regulated genes involved in cell cycle progression, demonstrating dependence of synovial fibroblasts on these HOX genes for cell division. Other enriched pathways were Toll-like receptor and integrin signaling pathways, regulation of unsaturated fatty acid synthesis and autophagy and extra-cellular matrix protein organization. We could...