SAT0039

ADAPTIVE DEEP LEARNING FOR THE PREDICTION OF INDIVIDUAL DISEASE ACTIVITY IN PATIENTS WITH RHEUMATOID ARTHRITIS

M. Hügle1, G. Kalweit2, W. Walker, A. Finckn3, R. Muller4, A. Scherer5, J. Boedecker6 on behalf of the participating physicians of the Swiss Quality Management in Rheumatic Diseases.

1Department of Computer Science, University of Freiburg, Germany, Freiburg, Germany; 2Department of Rheumatology, University Hospital Basel, Switzerland, Basel, Switzerland; 3Division of Rheumatology, University Hospital Geneva, Switzerland, Geneva, Switzerland; 4Department of Rheumatology, Kantonsspital Aarau, Switzerland, Aarau, Switzerland; 5SCQM Foundation, Zürich, Switzerland, Zürich, Switzerland; 6Department of Rheumatology, Lausanne University Hospital, CHUV, Switzerland, Lausanne, Switzerland

Background: Rheumatoid arthritis (RA) lacks reliable biomarkers that predict disease evolution on an individual basis, potentially leading to over- and under-treatment. Deep neural networks learn from former experiences on a large scale and can be used to predict future events as a potential tool for personalized clinical assistance.

Objectives: To investigate deep learning for the prediction of individual disease activity in RA.

Methods: Demographic and disease characteristics from over 9500 patients with 65,000 visits from the Swiss Quality Management (SCQM) database were used to train and evaluate an adaptive recurrent neural network (AdaptiveNet). Patient and disease characteristics along with clinical and patient reported outcomes, laboratory values and medication were used as input features. DAS28-BSR was used to predict active disease and future numeric individual disease activity by classification and regression, respectively.

Results: AdaptiveNet predicted active disease defined as DAS28-BSR>2.6 at the next visit, with an overall accuracy of 75.6% and a sensitivity and specificity of 84.2% and 61.5%, respectively. Apart from DAS28-BSR, the most influential characteristics to predict disease activity were joint pain, disease duration, age and medication. Longer disease duration, age >50 or antibody positivity marginally improved prediction performance. Regression allowed forecasting individual DAS28-BSR values with a mean squared error of 0.9.

Conclusion: Deep neural networks have the capacity to predict individual disease outcome in RA. Low specificity remains challenging and might benefit from alternative input data or outcome targets.

References: