SAT0022

CXL7 PROMOTES OSTEOCLASTOGENESIS IN RHEUMATOID ARTHRITIS

X. Wang1, L. Sun1, J. Zhao1. 1Peking University Third Hospital, Department of Rheumatology and Immunology, Beijing, China

Background: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by bone destruction[1]. Chemokine signaling by skeletal cells or by other cells of the bone marrow niche regulates bone formation and resorption[2]. Recent studies have found that CXL7 enhanced the osteoclast formation in mouse bone marrow cells[3, 4]. Whether CXL7 plays a role in human osteoclastogenesis especially in RA patients remains unclear.

Objectives: To examine the functional role of CXL7 in the induction of osteoclastogenesis in RA.

Methods: The level of CXL7 in CD14+ monocyte supernatant was assessed via enzyme-linked immunosorbent assay. Osteoclastogenesis of CD14+ monocyte from RA patients and healthy donors were evaluated by TRAP staining and F-actin ring immunofluorescence. Bone resorption pit was observed by scanning electron microscopy. We performed quantitative reverse transcription polymerase chain reaction (RT-PCR) to detect changes in osteoclast markers, RAW264.7 macrophages were also used to investigate specific signaling pathway by which CXL7 stimulated during osteoclast formation.

Results: CXL7 level in CD14+ monocyte supernatant from RA patients (5690 ±672.05 pg/ml) was significantly higher than that in healthy controls (2301 ±35.52 pg/ml) (n=5, P<0.001). In the presence of M-CSF and RANKL, CXL7 promoted osteoclast formation(Figure 1A and B) and increased bone resorption area(Figure 1C) of CD14+ monocyte from healthy donors in the low concentration (10ng/ml) group (n=3, p < 0.05). While in high concentration of CXL7 (50ng/ml) group, there were no significant changes in the number of osteoclasts. Transcription level of the

References:

Acknowledgments: We gratefully thank the Medical Research Center of Peking University Third Hospital for providing experimental equipment and technical support.

Disclosure of Interests: None declared DOI: 10.1136/annrheumdis-2020-eular.1474

SAT0023

THE ROLE OF ADAM12 UREGULATED PROLIFERATION OF SYNOVIAL MEMBRANE IN RHEUMATOID ARTHRITIS

M. Watanabe1, K. Nishida2, Y. Nasu3, R. Nakahara2, M. Matsuhashi1, Y. Hotta1, T. Ozaki1. 1Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; 2Okayama University Hospital, Okayama, Japan

Background: ADAM12 is a member of a disintegrin and metalloproteinase family and has been reported to participate in the development of a variety of tumors by degrading ECM and shed precursors, thus promoting cell proliferation, invasion, and metastasis1). Additionally, ADAM12 is involved in chondrocyte differentiation from osteoarthritis (OA) patients by regulation of TGFβ1-induced IGF-1 and RUNX-2 expressions2). However, there is no report on the role of ADAM12 for rheumatoid arthritis (RA).

Objectives: To investigate the expression and role of ADAM12 in the synovial tissue of RA.

Methods: (1) The expression of ADAM12 in synovial tissues from RA (18 cases), OA (5 cases) and healthy control (HC) (3 cases) was examined by immunohistochemistry. The synovial tissues of HC were obtained during surgery of hemiarthroplasty for bone tumors. Three researchers evaluated the positive cell ratio. The samples were scored according to the percentage of positive staining: 0 points (weak positive, positive expression was less than 5%), 1 point (moderate positive, positive expression was between 5% and 50%) and 2 points (strong positive, positive expression was greater than 50%). In addition, the samples were scored according to the staining intensity: 0 points (weak intensity), 1 point (moderate intensity) and 2 points (high intensity).

Figure 1. CXL7 induced osteoclast differentiation and bone resorption in healthy donors. CD14+ monocytes isolated from healthy donors were cultured in the presence of M-CSF(100 ng/ml) and RAW264.7 with CXL7(10 ng/ml) during the whole period of osteoclastogenesis.

Results: (1) ADAM12 positive cells were found in synovial lining cells, plasma cells, and vascular endothelial cells. ADAM12 was highly expressed in RA synovial tissues. The immunostaining scores of RA, OA, and HC were 3.9±0.01, 1.9±0.27, and 0.8±0.18, respectively. (2) Stimulation by TNFα, TGFB1, and PDGF-BB resulted in the upregulation of the expression of ADAM12 relative mRNA in RASF, and TGFB1 stimulation notably tended to increase the expression by about 5 to 6 times. (3) siADAM12 successfully suppressed the expression of ADAM12 mRNA and simultaneously suppressed the proliferation of RASF.

Conclusion: ADAM12 might be involved in the pathogenesis of RA, promoting the cell proliferation of RASF.
Disclosure of Interests: Masahito Watanabe: None declared, Keiichiro Nishida Grant/research support from: K. Nishida has received scholarship donation from CHUGAI PHARMACEUTICAL Co., Eisai Co., Mitsubishi Tanabe Pharma and AbbVie G.K., Speakers bureau: K. Nishida has received speaking fees from CHUGAI PHARMACEUTICAL Co., Eli Lilly, Janssen Pharmaceutical K.K., Eisai Co. and AYUMI Pharmaceutical Corporation., Yoshihisa Nasu: None declared, Ryusuke Nakahara: None declared, Minami Matsuhashi: None declared, Yoshihisa Nasu: None declared, Yuji Arai: None declared, Hideki Asakura: None declared, Katsuaki Sano: None declared, Hiroto Ueda: None declared, Chie Nakamura: None declared, Hiroshi Ichikawa: None declared, Hiroshi Suezawa: None declared, Shigenori Matsumura: None declared, Naoki Tani: None declared, Hisao Mino: None declared, Toshishige Ozaki: None declared

DOI: 10.1136/annrheumdis-2020-eular.5062

SAT0025

NEUROMEDIN U SUPPRESSES COLLAGEN-INDUCED ARTHRITIS THROUGH ACTIVATION OF ILC2

Y. Zhang1, Y. Qin1, Z. Chen1. The First Affiliated Hospital of USTC, Rheumatology and Immunology, Hefei, China

Background: Reduction and dysregulation of ILC2 was linked to delayed resolution of arthritis. The neuropeptide Neuromedin U (NMU) has been reported to rapidly activate ILC2 and initiate a Th2 type immune response through NMU1 expressed on the surface of ILC2. However, one previous study reported that NMU promoted autoantibody-mediated arthritis.

Objectives: The aim of this work was to investigate the effect of NMU on collagen-induced arthritis (CIA) mice and the potential mechanisms.

Methods: CIA was induced in C57BL/6 WT and C57BL/6Inu/nu deficient mice on day 1. WT mice were treated i.p. daily by NMU-23 (20ug/mice) or by PBS for 10 days from day 1 to 5 and day 21 to 25. The clinical scores of CIA mice were assessed every two days from day 22 and determined on a scale of 0–4 for each paw. The proportion of ILC2 as well as Th1, Th2, Th17 and Treg in spleen, mesenteric lymph node (mLN) and joints of arthritic mice were analyzed by flow cytometry on day 42.

Results: NMU-23 dramatically inhibited clinical onset and severity of arthritis in treated WT mice compared with control mice. Interestingly, NMU-deficient mice also developed significantly less severe arthritis compared with WT control (Fig 1). Flow cytometry analyses showed that the proportion of ILC2, which defined as Lin-CD45+CD127+KLRG1+ICOS+ST2+, was elevated in the joint but not in the spleen and mLN of arthritic mice treated with NMU-23. In contrast, the proportion of ILC2 was significantly lower in the spleen of NMU-deficient mice than WT control. The percentage of Th2 cells in the spleen and mLN tend to be higher in NMU-23 treated mice, but there is no statistical significance. Surprisingly, Th1 cells were increased in the mLN of NMU-23 treated and NMU-deficient mice compared with control whereas Th17 was comparable among groups. In addition, the proportion of Treg was decreased in the joint of NMU-23 treated and NMU-deficient mice compared with control mice.

Conclusion: Our preliminary results show that repeated injection of NMU-23 during induction (early) and development (late) stage of CIA strongly suppressed clinical onset and severity of arthritis, which might be ascribed to activation of ILC2 in the joint. Further study is needed to explore other cellular and molecular mechanisms in the effect.

References:

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.5062

SAT0024

JAK-INHIBITION WITH BARICITINIB INHIBITS ACTIVATION OF NLRP1/CASPASE-1/GSDMD PYROPTOSIS PATHWAY IN RHEUMATOID ARTHRITIS SYNOVIAL FIBROBLASTS

W. Xie1, Z. Zhang1. Peking University First Hospital, Department of Rheumatology and Clinical Immunology, Beijing, China

Background: Synovial fibroblasts (SFs) play a major role in the pathogenesis of rheumatoid arthritis (RA) and develop an aggressive phenotype destroying cartilage and bone, thus termed RASFs.

Objectives: We aim to examine the presence of GSDMD-mediated pyroptosis and its role in activated RASFs.

Methods: RASFs were isolated from RA synovium obtained from knee replacement surgeries. NLRP1, Caspase-1, GSDMD expression in synovial tissue and TNF-treated RASFs were assessed by qPCR and Western blot. Interleukin (IL)-1 was measured by ELISA in supernatant after pretreated with TNF and baricitinib. LDH release was measured using the CytoTox 96 Non-Radioactive Cytotoxicity Assay Kit. Endogenous NLRP1, Caspase-1, and GSDMD was knocked down using small interfering RNA.

Results: The expressions of NLRP1, pro-Caspase-1, Caspase-1 p10, GSDMD and its pyroptosis-inducing fragment GSDMD-N were greater in RA synovium than OA synovium. TNF-induced NLRP1, pro-Caspase-1, Caspase-1 p10, GSDMD, and GSDMD-N expression at the transcript and protein level in a time-dependent manner (P < 0.05). Meanwhile, the release of LDH and IL-1 were significantly increased in RASFs after treated with TNF. We also confirmed the presence of pyroptosis in electron microscopy. Furthermore, blocking the JAK pathway with baricitinib significantly reduced TNF-induced pyroptosis at the transcriptional, protein and activity levels (P < 0.05). Finally, blocking the JAK pathway, we observed a reduction of IL-1 bioactivity in RASFs (P < 0.05).

Conclusion: Our results demonstrate an important role of GSDMD-mediated pyroptosis and shed lights on a potential pyroptosis-targeted treatment. Meanwhile, JAK inhibition alleviates inflammasome-induced pyroptosis by blocking pyroptosis pathway in RASFs.

References:


Disclosure of Interests: None declared