counts (α-SMA staining) and of 23 serum inflammatory cytokines/chemokines (Mouse-Cytokine-23-plex, Bio-Rad Laboratories).

Results: 17-DMAG decreased dermal thickening by 53±3% (p<0.001) (nintedanib by 46±2%, p<0.001), collagen content by 40±5% (p<0.001) (nintedanib by 50±4%, p=0.003), myofibroblast counts by 42±9% (p<0.001) (nintedanib by 44±7%, p<0.001), and levels of IL-1α, IL-6, IL-12(p40), CXCL1, MCP-1, MIP-1β, RANTES (in all: p<0.05) compared to vehicle-treated mice injected with bleomycin for 6w. Moreover, 17-DMAG also induced regression of pre-established fibrosis to below the levels of vehicle-treated mice injected with bleomycin for 3w and NAC for 3w (dermal thickness by 14±3%, collagen content by 20±5%, myofibroblast counts by 13±9%; whereas in nintedanib by 10±3%, 21±4%, 17±7%, respectively; in all: p<0.05), and levels of IL-12(p40), CXCL1, MCP-1, MIP-1β, RANTES (in all: p<0.05). No significant weight loss, decrease in activity or changes in fur texture were observed upon 17-DMAG treatment.

Conclusion: This is the first study on effects of Hsp90 inhibitor 17-DMAG in the treatment of established dermal fibrosis. We demonstrate that 17-DMAG efficiently prevents the progression and induces regression of established bleomycin-induced dermal fibrosis, in an extent that was comparable to nintedanib in this study (which was recently FDA approved for slowing the rate of decline in lung function in adults with SSCc-ILD). 17-DMAG was well tolerated without obvious clinical signs of toxicity. These data suggest that Hsp90 could be a novel potential target in the treatment of SSC dermal fibrosis.

Acknowledgments: Supported by AZV-16-33542A, MCHCR023728, SVV206373.

Boehringer Ingelheim.

Disclosure of Interests: Hana Storkanová: None declared, Lenka Storkanová: None declared, Sabina Oreška: None declared, Maja Špiritová: None declared, Barbora Hečková: None declared, Věra Mrázková: None declared, Jörg Distler Grant/Travel grant: None declared, Sabina Oreska: None declared, Maja Špiritovič: None declared, Barbora Hečková: None declared.

Acknowledgments: This work was supported by the Ministry of Health of the Czech Republic grants nr. 16-33746A and donation 140.0000008.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.3597

OP0136

THE INFLUENCE OF LONG-TERM EXERCISE AND IN VITRO EXERCISE-MIMICKING STIMULATION ON THE PRODUCTION OF MYOKINES AND CYTOKINES IN MYOTUBES OF PATIENTS WITH CHRONIC INFLAMMATORY MYOPATHIES

1Institute of Rheumatology, Prague, Czech Republic; 2Institute of Rheumatology and Department of Physical Therapy, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic; 3Institute of Neurophysiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; 4Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia (Slovak Republic); 5Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences and Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia (Slovak Republic)

Background: It has been demonstrated several times that endurance exercise has beneficial effects on the condition of patients with idiopathic inflammatory myopathies (IM). Muscle contraction during exercise is a major stimulus for the release of myokines that are supposed to take part in the beneficial adaption to exercise.

Objectives: The aim of this study was to find out how a six-month physiotherapy and in vitro exercise-mimicking treatment affect myokine and cytokine production in myotubes of IM patients and healthy controls.

Methods: Seven patients with chronic IM took part in a six-month physiotherapy (stretching and strengthening), which significantly improved their muscle strength and endurance. IM patients (n=7) before and after the six months exercise and their respective healthy counterparts (HC, n=9) underwent a six-month rehabilitation program, activin A secretion was expressed significantly more in muscle cells of patients than in healthy controls' cells (p<0.05). After a six-month rehabilitation program, activin A secretion was four-fold reduced in myotubes of patients with IM, while myostatin release and gene expression remained unchanged. In myotubes of IM patients, less follistatin and more follistatin like 3 were detected in the culture medium compared to HC myotubes. Myotubes derived from IM patients after six months of rehabilitation treatment secreted twice as much follistatin and half the amount of follistatin like 3 into the medium than myotubes derived from IM patients prior to rehabilitation (p<0.05). There was no difference in secretion of interleukin (IL) 6, IL-17, tumor necrosis factor (TNF) and vascular endothelial growth factor (VEGF) between myotubes of IM patients and myotubes of HC. However, six-month exercise significantly (p<0.05) reduced release of IL-6, TNF-α, and VEGF in myotubes of IM patients. Contrary to our expectation, stimulation of PFI had no effect on the release of myostatin, activin A, follistatin and follistatin like 3, or the expression of their genes. PFI treatment significantly (p<0.05) increased IL-6 secretion in myotubes from HC and IM patients prior to six months of rehabilitation. On the other hand, we was observed that myotubes of HC and IM patients exposed to the PFI cocktail secreted significantly less inflammatory cytokines IL-17, TNF-α and VEGF into the medium compared to unstimulated myotubes (p<0.05).

Conclusion: In conclusion, long-term exercise influenced the production of myokines and decreased release of inflammatory cytokines in myotubes of IM patients. In vitro exercise-mimicking treatment increased the secretion of IL-6 and decreased the release of inflammatory cytokines as IL-17, TNF-α and VEGF in myotubes of patients with IM and healthy individuals.

Acknowledgments: This work was supported by the Ministry of Health of the Czech Republic grants nr. 16-33746A and donation 140.0000008.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.5543

OP0137

GENOME-WIDE WHOLE-BLOOD TRANSCRIPTOME PROFILING IN A LARGE EUROPEAN COHORT OF SYSTEMIC SCLEEROSIS PATIENTS

L. Beretta1, G. Barturen2, B. Vigné3, C. Bellochi3, N. Hunzelmann3, E. Delanghe3, L. Kovács3, R. Cervera4, M. Gerosa4, R. Ortega Castro4, I. Almeida5, D. Concej6, C. Chizzolini7, J. O. Pers8, Z. Makowska9, A. Buttgereit10, R. Lesche12, M. Kerkvliet3, M. Alarcon-Riquelme1, J. Martin Ibanez10, A. Serraderuma11, Fondatazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; 2GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS GRANADA, Granada, Spain; 3Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; 4Klinik und Poliklinik für Dermatologie und Venerologie, KÖln, Germany; 5Division of Rheumatology, University Hospitals Leuven and Skeletal Biology and Engineering Research Center, Leuven, Belgium; 6Department of Rheumatology and Immunology, University of Szeged, Szeged, Hungary; 7Department of Autoimmune Diseases, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain; 8Service de Immunologie EX-CICAP, Centro Hospitalar e Universitário do Porto, Porto, Portugal; 9U12212 Université de Brest, Inserm, Labex IGO, CHU de Brest, Brest, France; 10Immuno & Allergy, University Hospital and School of Medicine, Geneva, Geneva, Switzerland; 11Bayer AG, Berlin, Germany; 12Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, Granada, Spain

Background: The analysis of annotated transcripts from genome-wide expression studies data is of paramount importance to understand the molecular phenomena underlying the occurrence of complex diseases, such as systemic sclerosis (SSc).

Objectives: To perform whole-blood transcriptome and pathway analysis on whole-blood (WB) RNA collected in two cohorts of European SSc patients. Via a discovery and validation strategy we aimed at characterizing the molecular pathways that differentiate SSc from controls and that are reproducible in geographically diverse populations.

Methods: WB samples from 252 controls and 162 SSc patients were collected in RNA stabilizers. Patients were divided into a discovery (n=79; Southern Europe) and validation cohort (n=83; Central-Western Europe). RNA sequencing was performed with the FAIME algorithm. In parallel, a immunophenotyping analysis on 28 circulating cell populations was assessed. We then tested the presence of differentially expressed genes with metagene selection between absolute cell counts and RNA transcripts/FAIME scores in regression models. Results significant in both populations were considered as replicated.

Results: A total of 15224 genes and 1277 related functional pathways were available for analysis. Among these, 99 genes and 225 pathways were significant in both sets. The heatmap in figure shows the relative expression of replicated pathways and the distribution of cases and controls (red and green bars). Among the significant pathways we found a deregulation in: type-I IFN, TLR-cascade and signalling, function of the tumor suppressor p53 protein, platelet degranulation and activation. Correlation analysis showed that the count of several cell