declined during 1st/2nd pregnancy trimester (SLEDAI-2K:1.91±2.09, 1.70±2.22) but increased during the 1st and 2nd trimester post labor (SLEDAI-2K:2.47±4.29 and 2.52±3.72).

Conclusion: This is the first Greek inception cohort with prospective monitoring of pregnant SLE patients without serious relapses. Vigilant monitoring during pregnancy and post-labour is advised.

References:

Acknowledgments: Hellenic Rheumatology Association

Disclosure of Interests: Stella Ntaf: None declared, Lina Pantazi: None declared, Kyriaki Bok: None declared, Dionysis Nikolopoulos: None declared, Antonis Fanouriakis: None declared, Despoina Dimopoulou: None declared, Ioannis Kalitatsakis Grant/research support from: MSD. Speakers bureau: Genesis pharma, Bristol-Myers Squibb, CHARALAMPOS PAPAGORAS: None declared, Vasiliki Dania: None declared, Eugenia Emmanouilidou: None declared, George Bertsias Grant/research support from: GSK. Consultant of: Novartis

DOI: 10.1136/annrheumdis-2020-eular.6195

The Effect of Paternal Exposure to Immunosuppressive Drugs on Sexual Function, Reproductive Hormones, Fertility, Pregnancy and Offspring Outcomes: A Systematic Review

L. J. Perez1, R. Dolhain1, S. Vorstenbosch2, W. Bramer3, E. Van Pujenbroek2,4, J. Hazes5, B. Te Winkel1, 2Erasmus MC, University Medical Center, Rheumatology, Rotterdam, Netherlands; 2Netherlands Pharmacovigilance Centre Laren, 3-5 Hertogenbosch, Netherlands; 6Erasmus MC, University Medical Center, Medical Library, Rotterdam, Netherland; 7University of Groningen, Groningen Research Institute of Pharmacy, Pharmacotherapy, Epidemiology and Economics, Groningen, Netherlands.

Background: Information regarding the possible influence of immunosuppressive drugs on male sexual function and reproductive outcomes is scarce. Men diagnosed with immune-mediated diseases and a wish to become a father represent an important neglected population since they lack vital information to make balanced decisions about their treatment.

Objectives: To systematically review the literature for the influence of paternal immunosuppressive drug use on many aspects of male sexual health, such as sexual function, fertility, pregnancy outcomes and on their offspring health outcome.

Methods: A systematic literature search was performed in the bibliographic databases: Embase (via Elsevier, embase.com), MEDLINE ALL via Ovid, Cochrane Central Register of Trials (via Wiley) and Web of Science Core Collection. Additionally, Google Scholar and the Clinical trial registries of Europe and the USA were searched. The databases were searched from inception until August 31st 2019. The searches combined keywords regarding male sexual function and fertility, pregnancy outcomes and offspring's health with a list of immunosuppressive drugs. Studies were included if they were published in English and if they included original data on male human exposure to immunosuppressive drugs.

Results: A total of 5867 references were identified among which we identified 163 articles fulfilling the eligibility criteria. Forty nine articles included pregnancy and offspring outcomes and 116 articles included sexual health outcomes. With the exception of large Scandinavian cohorts, most of the identified articles included a small number of participants. While a clear negative effect on sperm quality was evident for sulfasalazine and cyclophosphamide a dubious effect was identified for colchicine, methotrexate and sirolimus. In 3 articles exposure to TNF-a inhibitors in patients diagnosed with ankylosing spondylitis resulted in improved sperm quality. The information regarding pregnancy and offspring outcomes was scant but no large negative effect associated with paternal immunosuppressive drug exposure was reported.

Conclusion: Evidence regarding the safety of immunosuppressive drugs in men with a wish to become a father is inconclusive. The lack of standardization on how to evaluate and report male sexual function, fertility and reproduction as study outcomes in men exposed to immunosuppressive drugs is an important contributor to this result. Future research on this topic is needed and should be preferably done using standardized methods.

Disclosure of Interests: Luis Fernando Perez: None declared, Radboud Dolhain Grant/research support from: unrestricted grant from UCB Pharma, Saskia Vorstenbosch: None declared, Wichor Bramer: None declared, Eugene van Pujenbroek: None declared, Johanna Hazes: None declared, Berneke te Winkel: None declared

DOI: 10.1136/annrheumdis-2020-eular.3092

The Incidence and Mortality of Giant Cell Arteritis Temporally and Across Regions

D. Semenov1, K. Li1, M. Turk1, J. Pope1 on behalf of Schulich School of Medicine & Dentistry, 1Schulich School of Medicine & Dentistry, London, Canada

Background: Giant cell arteritis (GCA) is an immune-mediated disease of the large vessels, and occurs in adults over 50 years old. It is the most commonly seen form of chronic vasculitis and is associated with significant rates of morbidity and mortality. This meta-analysis examines the geographical and temporal epidemiology of GCA, including incidence, prevalence and mortality.

Objectives: 1. To identify changes in incidence rate, prevalence, and mortality rate over time 2. To compare these rates between geographic regions around the world

Methods: A systematic review of the English literature was conducted using the EMBase, Scopus and PubMed databases. Articles were included if they were cohort or cross-sectional studies with 50 or more patients with GCA and reported on population, location and time-frame parameters. Articles on mortality were included if they compared mortality to age and gender matched population. Review articles, case-control studies and case series were excluded. Two reviewers extracted data and a third verified inclusion of studies. Study quality was assessed by using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist. Mortality rate was standardized across cohorts to deaths per 1000 people per year.

Results: Of the 3599 citations identified by the literature search, 107 were included in analysis. The pooled incidence of GCA internationally was 10.00 [9.02, 10.78] cases per 100 000 people over 50 years old (Figure). This incidence was highest in Scandinavia 21.57 [18.90, 24.23], followed by North and South America 10.89 [8.78, 13.00], Europe 7.26 [6.05, 8.47], and Oceania 7.85 [1.48,17.19]. Nine studies reported prevalence. Pooled prevalence from these nine was 5.17 [42.04,61.43] cases per 100 000 people over 50 years old. Overall, pooled mortality was 20.44 [17.84,23.03] deaths/1000 per year. Mortality had a generally decreasing trend over the years of publication.

Conclusion: The incidence of GCA varies regionally almost 3-fold. Likely genetic and environmental factors may explain this trend. Incidence and prevalence are important for tracking the efficacy and side effects of current therapies, as well as planning for the costs of biologic treatment.