of concordance between PtGA and PhGA may mislead treatment decisions, namely switches.

Objectives: To assess the determinants of patient-physician discordance in SpA patients under biologic treatment.

Methods: Cross-sectional study, including 72 with SpA according ASAS criteria. Physicians’ evaluation included comorbidities, parameters of inflammatory activity (erythrocyte sedimentation rate [ESR] and C-reactive protein [CRP], PhGA, ASDAS PCR and, DAS 28, and Participants completed patient-reported outcomes (PROs) and sociodemographic characteristics. For statistical analysis, SPSS was used and significance level was 2-sided p<.05.

Results: Clinical and laboratory characteristics of patients are shown in table 1. PtGA and PhGA were significantly different (34.8±2.1 vs 78±12.5 mm, respectively, p<.001) and patient-physician discordance (ΔPtGA - PhGA) was 27.5±14.3 mm.

In peripheral SpA, patient-physician discordance had a correlation with patient age, Health Assessment Questionnaire (HAQ), Functional Assessment of Chronic Illness Therapy (FACT), EuroQol-5 dimension (EQ5D), Short Form (36) Health Survey (SF-36), Hospital Anxiety and Depression scales (HADS), CRP, ESR, number of comorbidities and daily medication, and an association with employment status (employees had lesser discordance), anxiety/depression, fibromyalgia and osteoarthritis (OA). In multivariable analysis including employment status, SF-36, OA, number of comorbidities, and ESR (R² adjusted=.505), the main predictors of patient-physician discordance were lower SF36, higher number of comorbidities and employment status.

In axial SpA, patient-physician discordance had a correlation with nocturnal back pain and total back pain VAS, FACT, EQ5D, SF-36, HADS, Bath Ankylosing Spondylitis Functional Index (BASFI) and Bath Ankylosing Spondylitis Activity Index (BASDAI) scales, age, number of comorbidities and daily medication, and an association with employment status (employees had lesser discordance), anxiety/depression and fibromyalgia. In multivariable analysis including employment status, SF-36, fibromyalgia, and number of comorbidities (R² adjusted=.738), the main predictors of patient-physician discordance were lower SF36, higher number of comorbidities and concomitant diagnosis of fibromyalgia.

Neither for peripheral SpA nor for axial SpA an association with SpA subtype, HLA-B27 positivity, patient or physician gender, or patient education level was found.

Conclusion: This study shows the variability implied in patient-physician discordance. We have demonstrated that comorbidities, employment status, and other factors not directly related to the disease are determinants for the patient-physician discordance.

References:
3. Mease PJ. 2011

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2020-eular.3341

FR03008 ANKYLOSING SPONDYLITIS PATIENTS AT RISK OF DEVELOPING AORTIC VALVE REGURGITATION, NEED FOR MANDATORY ECHOCARDIOGRAPHY? M. Baniaam1,2, S. C. Heslinga1, M. L. Handoko1, L. Boeke1, T. C. Konings1, O. Kamp2, V. P. Van Halm3, J. C. Van Denderen1, I. Van der Horst-Bruinsma1, M. Nurmohamed1,2. 1Amsterdam Rheumatology & Immunology Center, Reade, Amsterdam, Netherlands; 2Amsterdam Rheumatology & Immunology Center, Amsterdam University Medical Center, location VUMc, Amsterdam, Netherlands; 3Amsterdam University Medical Center, location VUMc, Department of Cardiology, Amsterdam, Netherlands

Background: The overall mortality rate in ankylosing spondylitis (AS) patients is increased by 60–90% compared with the general population. This higher mortality rate is predominately caused by cardiovascular disease (CVD) comprising an increased prevalence of cardiac diseases such as valvular heart disease, conduction disturbances and cardiomyopathies as well as atheroclerotic diseases such as myocardial infarctions. However, there is a lack of contemporary studies. Therefore, we investigated current prevalences of cardiac disorders in a well characterized cohort of Dutch patients with AS compared to osteoarthritis (OA) controls.

Objectives: To assess the prevalence of CVD in AS patients in comparison to OA controls in a Dutch population.

Methods: We performed a cross-sectional study in AS and OA patients between 50–75 years. Subjects were recruited from a large rheumatology outpatient clinic (Reade) in Amsterdam, the Netherlands. Patients underwent echocardiography with 2D, spectral and Color Doppler imaging. The echocardiogram was evaluated by an experienced and certified cardiologist. Diastolic dysfunction was assessed according to the ASE/ACVI 2016 guideline. Furthermore, blood sample, surveys and physical examination were done. Disease activity and function were measured using the BASFI, BASDAI and the ASDAS-CRP.

Results: A total of 193 consecutive AS patients were included with a median age of 60 (±7) years of which 72% men (138). The control group consisted of 70 OA patients (table 1). In the AS cohort the disease activity measures, BASDAI, ASDAS-CRP and BASFI, indicated moderate disease activity and were, respectively 3.1 (1.6-5.0), 2.1 (1.0) and 3.5 (1.7-5.7). Anti-TNF was used by 43% of the AS patients. History of cardiovascular disease (CVD), i.e. angina pectoris, myocardial infarction, stroke and/or peripheral ischemia was comparable between the AS and OA cohort, respectively 9% (17) and 10% (7), p=0.81.

Antihypertensives were significantly more often used in AS patients, 85 (44%) vs 19 (27%), p=0.02. Prevalences of systolic dysfunction and diastolic dysfunction did not differ significantly in AS and OA patients, respectively 5% vs 2 (5%), p=0.96 in systolic dysfunction and 7 (3%) vs 2 (3%), p=0.86 in diastolic dysfunction. Prevalence of aortic valve (AV) regurgitation was significantly higher in AS patients compared to OA patients, respectively 68 (36%) vs 21 (33%), p=0.59. When corrected for age, gender and cardiovascular risk factors in a regression analysis, AS patients still had a substantially increased risk for AV regurgitation, odds ratio (OR) 2.8 95%CI 1.1-7.2, p=0.038.

Table 1. Patient characteristics

<table>
<thead>
<tr>
<th></th>
<th>AS</th>
<th>OA</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>193</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Men (n, %)</td>
<td>138 (72)</td>
<td>40 (57)</td>
<td>0.028</td>
</tr>
<tr>
<td>Age (years)</td>
<td>60 ±7</td>
<td>63 ±7</td>
<td>0.004</td>
</tr>
<tr>
<td>Disease activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BASDAI</td>
<td>3.1 (1.6-5.0)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ASDAS-CRP</td>
<td>2.1 ±3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>BASFI</td>
<td>3.5 (1.7-5.7)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CVD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of CVD* (n, %)</td>
<td>17 (9)</td>
<td>7 (10)</td>
<td>0.81</td>
</tr>
<tr>
<td>Antihypertensives (n, %)</td>
<td>85 (44)</td>
<td>19 (27)</td>
<td>0.02</td>
</tr>
<tr>
<td>Aortic valve regurgitation (n, %)</td>
<td>41 (22)</td>
<td>7 (10)</td>
<td>0.04*</td>
</tr>
<tr>
<td>Trace (n, %)</td>
<td>16 (9)</td>
<td>6 (9)</td>
<td></td>
</tr>
<tr>
<td>Mild (n, %)</td>
<td>53 (22)</td>
<td>6 (9)</td>
<td></td>
</tr>
<tr>
<td>Moderate (n, %)</td>
<td>1 (1)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Severe (n, %)</td>
<td>1 (1)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Prosthesis (n, %)</td>
<td>1 (1)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mitral valve regurgitation (n, %)</td>
<td>68 (36)</td>
<td>21 (33)</td>
<td>0.59</td>
</tr>
<tr>
<td>Diastolic dysfunction (n, %)</td>
<td>7 (3)</td>
<td>2 (3)</td>
<td>0.86</td>
</tr>
</tbody>
</table>

*Angina pectoris, myocardial infarction, stroke and/or peripheral ischemia

Conclusion: This study demonstrates an almost tripled risk for developing AV regurgitation in Dutch AS patients. Although mostly mild in this age, due to the progressive nature of AV regurgitation in AS, echocardiographic screening should be considered in elderly AS patients.

Disclosure of Interests: Milad Baniaam: None declared, Sjoerd C. Heslinga: None declared, M.L. Handoko: None declared, Laura Boeke: None declared, Thelma C. Konings: None declared, Otto Kamp: None declared, Vokko P. van Halm: None declared, J.C. van Denderen: None declared, Irene van der Handenstraat: None declared, Thelma C. Konings: None declared, Otto Kamp: None declared, Laura Boeke: None declared, Milad Baniaam: None declared, Sjoerd C. Heslinga: None declared, M.L. Handoko: None declared, Laura Boeke: None declared, Thelma C. Konings: None declared, Otto Kamp: None declared, Vokko P. van Halm: None declared, J.C. van Denderen: None declared, Irene van der Handenstraat: None declared, Thelma C. Konings: None declared, Otto Kamp: None declared, Vokko P. van Halm: None declared, J.C. van Denderen: None declared, Irene van der.

FR03009 DAILY SELF-REPORTED FLARE PROFILES IN AXIAL SPONDYLOARTHRITIS: ASSOCIATIONS BETWEEN FLARE, SYMPTOMS AND BEHAVIOUR R. Barnett1, S. Ng2, S. Jones3, M. Young1, S. Sengupta1,2. 1University of Bath, Bath, United Kingdom; 2RNHRD, Bath, United Kingdom; 3White Swan, Exeter, United Kingdom

Background: Axial spondyloarthritis (axSpA) is a chronic inflammatory disease, characterised by fluctuating periods of flare and remission. Flare is a multidimensional change of disease state; whereby flare definitions have previously been formulated using validated composite indices, or through qualitative retrospective investigation of flare states. Smartphone technologies for tracking disease symptoms provide unique daily insights into self-reported individual flare experience, and may present an opportunity to gain a more complete understanding of flare burden and symptom patterns.