Conclusion: Enhanced expression of STAT1 by B-cells candidates as key node of two immunopathogenic signatures (type I IFN and B-cells) related to important immunopathogenic pathways and lupus activity. We show that STAT1 is activated upon IFNα exposure in SLE plasmablasts. Thus, Jak inhibitors, targeting JAK-STAT pathways, hold promise to block STAT1 expression and control plasmablast induction in SLE.

References:

Disclosure of Interests: The authors declare no conflicts of interest.

Acknowledgments: Nil

Figure 1a demonstrates that four groups were identified following hierarchical clustering of patient groups based on key regulators of iron metabolism. Figure 1b shows that PBMCs from patients with SLE have reduced maximal mitochondrial respiration capacity that is comparable to the levels seen in iron deficient healthy PMBCs.

Metabolic pathways during the regulation of inflammation and immunity

ABNORMAL IRON METABOLISM AND MITOCHONDRIAL DYSFUNCTION: INVESTIGATING A NOVEL PATHOLOGICAL MECHANISM IN SYSTEMIC LUPUS ERYTHEMATOSUS

C. Wincup1, G. Robinson1, T. Mcdonnell1, A. Radziszewska1, F. Farinha1, A. Rahman1.1University College London, Department of Rheumatology, London, United Kingdom

Background: Iron is vital for numerous essential physiological processes including erythropoiesis and energy metabolism (as iron is found in the mitochondrial electron transport chain, the central site of ATP production). Iron homeostasis is tightly controlled by a number of regulators including; 1. Hepcidin, which prevents iron release from stores (under the influence of IL6 and IL10); 2. Ferritin, an iron storage protein; 3. Lipocalin-2 (LCN2), which is released upon innate immune activation that induces iron sequestration; 4. Transferrin, which binds circulating iron release from stores (under the influence of IL6 and IL1); 5. Haptoglobin, which binds free haemoglobin and assisting iron recycling; 6. Erythropoietin (EPO), which stimulates erythropoiesis as a result of hypoxia. Chronic inflammation may result in dysregulation of iron metabolism and in turn impair mitochondrial function yet little is known regarding how these processes change in systemic lupus erythematosus (SLE).

Objectives: In this study, we investigated how dysregulation of iron metabolism may occur in SLE and subsequently sought to identify how a lack of iron may ultimately induce abnormal mitochondrial function.

Methods: 1. Investigating abnormal iron metabolism in SLE. Serum samples from patients with SLE (n=39) and healthy controls (HC, n=17) were assessed hepcidin, IL-15, IL-6, ferritin, LCN2, EPO, haptoglobin and transferrin levels by ELISA. Hierarchical cluster analysis of normalised data (converted to Z-scores) was performed using MeV software in order to characterise patient groups based upon iron metabolism profile. Anti-dsDNA antibody titres, complement C3 levels and SLEDAI-2K were excluded to limit the influence of these variables on cluster analysis. Results were presented as a heatmap.
2. Studying mitochondrial function in iron deficiency and SLE. Peripheral blood mononuclear cells (PBMCs) from HCs and patients with SLE were analysed using Seahorse Respirometry, which measures mitochondrial oxygen consumption rate (a measure of energy metabolism dependent upon oxidative phosphorylation). To assess differences between health, iron deficiency and SLE 3 groups were assessed; 1. PBMCs derived from HCs; 2. PBMCs from patients with SLE; 3. Healthy PBMCs cultured in iron deficient condition, in which cells were exposed to maximal respiration that is comparable with healthy PBMCs treated potent iron chelation. This suggests that abnormal iron metabolism may in turn limit mitochondrial energy metabolism in SLE and represents a potential future therapeutic target.

References: Nil

Conclusion: Patients with SLE demonstrate abnormalities in iron metabolism that results in cellular iron deficiency as iron is not released from stores, nor adequately transported at the rate required to meet physiological demands. Furthermore, PBMCs derived from patients with SLE who impaired basal and maximal respiration that is comparable with healthy PBMCs treated potent iron chelation. This suggests that abnormal iron metabolism may in turn limit mitochondrial energy metabolism in SLE and represents a potential future therapeutic target.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.2487

Campaign to promote physical activity & exercise to RMD patients through education and practice

A. Jacovou1.1Cyprus League Against Rheumatism, Nicosia, Cyprus

Background: Eular gives a lot of attention to outline the need of a change in RMD patients life style that is very well outlined into the 2018 Eular recommendations for Physical Activity (PA).

Objectives: Driven by those recommendations that says that "PA should be an integral part of standard care throughout the course of disease", CypLAR decided to create a campaign to promote PA through educating RMD patients on the PA benefits, make them to change their life style and enrol them to PA programs. More over we want to inform Rheumatologist and HPRs on that effort and enrol them to that campaign. The CypLAR’s goal through that campaign is to manage and enrol as much as possible patients to PA Programs for a continual period of about 10 months.

Conclusion: Enhanced expression of STAT1 by B-cells candidates as key node of two immunopathogenic signatures (type I IFN and B-cells) related to important immunopathogenic pathways and lupus activity. We show that STAT1 is activated upon IFNα exposure in SLE plasmablasts. Thus, Jak inhibitors, targeting JAK-STAT pathways, hold promise to block STAT1 expression and control plasmablast induction in SLE.

None declared

Acknowledgments: Nil

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.2487

Campaign to promote physical activity & exercise to RMD patients through education and practice

A. Jacovou1.1Cyprus League Against Rheumatism, Nicosia, Cyprus

Background: Eular gives a lot of attention to outline the need of a change in RMD patients life style that is very well outlined into the 2018 Eular recommendations for Physical Activity (PA).

Objectives: Driven by those recommendations that says that "PA should be an integral part of standard care throughout the course of disease", CypLAR decided to create a campaign to promote PA through educating RMD patients on the PA benefits, make them to change their life style and enrol them to PA programs. More over we want to inform Rheumatologist and HPRs on that effort and enrol them to that campaign. The CypLAR’s goal through that campaign is to manage and enrol as much as possible patients to PA Programs for a continual period of about 10 months.