THU0405 SERUM METABOLIC PROFILING ANALYSIS OF GOUT PATIENTS BASED ON UHPLC-Q-TOF/MS
T W Li1, Y Huang1, Z Zhong1, Q Huang1. (Guangdong Second Provincial General Hospital, Department of Rheumatology and Immunology, Guangzhou, China)

Background: Gout is a common kind of inflammatory arthritis with metabolic disorders. The detailed pathogenesis of gout remains largely unknown. Metabolomics has become an important tool in detecting the new pathogenesis and biomarkers. However, few studies have focused on the serum metabolic profiling of gout.

Objectives: The study aims to investigate the metabolic profiling of gout patients with a high-performance liquid chromatography quadruple time-of-flight mass spectrometry (UPLC-Q-TOF-MS), and explore the potential pathological mechanisms and biomarkers.

Methods: Serum samples from 31 gout patients and 31 healthy controls were analyzed by UPLC-Q-TOF-MS. Principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA) and Hierarchical clustering analysis were performed to detect different compounds between the two groups. Receiver operating characteristic (ROC) curve analysis and pathway analysis of the different metabolites were conducted.

Results: A total of 9192 compounds were detected, of which 138 significantly different compounds were selected, according to the criteria of (Variable importance in projection (VIP) > 3, P < 0.05). Eventually, 96 reliable metabolites matched the HMDB database were confirmed. ROC curve results showed that the area under the curve (AUC) value of 4-hydroxytriazolam for gout was 0.933 (C195%) 0.875-0.992, yielding a higher AUC value, with the sensitivity of 83.9% and specificity of 93.5%. The pathway analysis results indicated that the significantly different metabolites were mainly involved in “primary bile acid biosynthesis,” “purine metabolism” and “glycerophospholipid metabolism.”

Conclusion: The serum metabolic profiling in gout patients were significantly different from healthy subjects. The 4-hydroxytriazolam was the potential biomarkers. Primary bile acid biosynthesis may be a novel metabolic pathway of gout.

References:

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2020-eular.5963

THU0406 IDENTIFICATION OF INTRACELLULAR VACUOLES IN SYNOVIAL FLUID WITH CALCIUM PYROPHOSPHATE AND MONOSODIUM URATE CRYSTALS
M L Peral1, I Calabuig1, A Martin-Carratala1, M Andres1, E Pascual1. 1Hospital General Universitario de Alicante, Reumatología, Alicante, Spain

Background: Synovial fluid analysis using polarized microscopy is the gold standard for the diagnosis of crystal-related arthritis. In our experience, we have noted that, when calcium pyrophosphate (CPP) crystals are observed, they sometimes appear within intracellular vacuoles. However, this phenomenon is not seen in those samples containing monosodium urate (MSU) crystals. This finding has been scanty reported in the literature, but may be useful in clinical practice to ensure accurate crystal identification.

Objectives: Our study aims to assess whether the presence of vacuoles contributes to identifying the type of crystal, and also to gauge the frequency of their presentation.

Methods: We conducted an observational study in a rheumatology unit between February and June of 2019. Synovial fluids containing CPP or MSU crystals, obtained in daily clinical practice, were consecutively included for analysis. Two observers simultaneously analyzed the presence of vacuoles by ordinary light and phase contrast microscopy in less than 24 hours after their extraction, using a microscope equipped with two viewing stations. The primary study variable was to determine whether CPP and MSU crystals are seen inside intracellular vacuoles, and to calculate the frequency of this finding for each type of crystal, estimating their 95% confidence interval (95% CI) and comparing rates using Fisher’s exact test.

Results: Twenty-one samples were obtained. Data is given in the Table. The CPP crystals were present in 7 (33.3%) and CPP crystals in 14 (66.6%). Interestingly, none of the MSU samples showed crystal-containing vacuoles (95% CI 0-35.4%). On the contrary, cytoplasmic vacuoles containing crystals were present in all of the CPP samples (95% CI 78.5-100%). The findings were confirmed by phase contrast microscopy. Differences were statistically significant (p<0.001).

Table.

<table>
<thead>
<tr>
<th>SAMPLES ACCORDING TO TYPE OF MICROCRYSTAL (n=21)</th>
<th>SAMPLES WITH VACUOLS</th>
<th>SAMPLES WITH VACUOLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPP (14; 66.6%)</td>
<td>14 (100%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>MSU (7; 33.3%)</td>
<td>0 (0%)</td>
<td>7 (100%)</td>
</tr>
</tbody>
</table>

Conclusion: The presence of vacuoles may be a useful and easy way to differentiate MSU and CPP crystals when performing synovial fluid microscopy in clinical practice, since it appears to be a distinctive feature in CPP crystal fluids.

References:
Disclosure of Interests: None declared.

DOI: 10.1136/annrheumdis-2020-eular.3851

THU0407 THE VALUE OF SONOGRAPHY IN THE INTERCRITICAL PHASE OF GOUT

E. Cipolletta1, A. Di Matteo1,2, G. Brunori3, A. Moretti1, W. Grassi1, E. Filippucci1.
1Politecnico University of Marche, Rheumatology Unit - Department of Clinical and Molecular Sciences, Jesi, Ancona, Italy; 2University of Leeds, Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, United Kingdom

Background: Disease remission is the goal of therapy for many chronic rheumatic diseases. In 2016, provisional gout remission criteria were proposed (1). To the best of our knowledge, no studies have compared ultrasound (US) findings in gouty patients with and without remission.

Objectives: To determine the prevalence of US pathologic findings in patients with gout fulfilling and not fulfilling the provisional remission criteria and to investigate the value of the US findings as predictors of a gouty flare within 6 months.

Methods: Patients with a diagnosis of gout according to the 2015 classification criteria were satisfied in 9 (18.4%) patients. Monosodium urate (MSU) deposits were observed inside which have microcrystals with parallelepiped morphology, compatible with CPP.

Results: Forty-nine patients with gout were consecutively enrolled. The remission criteria were satisfied in 9 (18.4%) patients. Monosodium urate (MSU) deposits and findings of synovitis were observed by US less frequently in patients in remission (55.6% and 22.2%), compared with those not fulfilling the criteria (100.0% and 72.5%) (p values<0.01). The US MSU total score was 1.0; 0.0—2.0 (median and inter-quartile range) for patients in remission, compared with 6.0; 5.0—7.0 for those not fulfilling the criteria (p<0.01). US synovitis total score was significantly correlated with patient global assessment (R=0.55, p<0.01), patient pain (R=0.51, p<0.01) and number of gouty attacks in the previous 6 months (R=0.36, p=0.03), whereas MSU total score was associated with the number of gouty attacks in the previous 6 months (R=0.49, p<0.01), the number of subcutaneous tophi (R=0.45, p<0.01), patient pain (R=0.41, p=0.01), patient global assessment (R=0.41, p<0.01). At logistic regression analysis, the presence of subcutaneous tophi (OR=2.8, p=0.02), CRP level (OR=6.5, p=0.04) and US synovitis score (OR=2.0, p=0.04) were predictors of subsequent development of gouty flares within 6 months.

Conclusion: This study provides new insights into the inter-critical phase of gout, highlighting the clinical relevance of US synovitis as a predictor of subsequent development of gouty flare and joint pain. Despite MSU deposits are still detectable in patients satisfying the 2016 provisional remission criteria for gout, the remission is associated with less US detected MSU deposits.

References:

Disclosure of Interests: E. Cipolletta: None declared, Andrea Di Matteo Grant/research support from: the publication was conducted while Dr. Di Matteo was an ARTICULUM fellow, Giada Brunori: None declared, Antonella Moretti: None declared, Walter Grassi Speakers bureau: Prof. Grassi reports personal fees from AbbVie, personal fees from Celgene, personal fees from Grünenthal, personal fees from Pfizer, personal fees from Union Chimique Belge Pharma, outside the submitted work., Emilio Filippucci Speakers bureau: Dr. Filippucci reports personal fees from AbbVie, personal fees from Bristol-Myers Squibb, personal fees from Celgene, personal fees from Roche, personal fees from Union Chimique Belge Pharma, personal fees from Pfizer, outside the submitted work.

DOI: 10.1136/annrheumdis-2020-eular.1339

THU0408 EFFECT OF NEW-ONSET GOUT ON KIDNEY TRANSPLANT OUTCOMES: A RETROSPECTIVE COHORT ANALYSIS OF THE UNITED STATES RENAL DATA SYSTEM

1Trinity Partners, Waltham, United States of America; 2Horizon Therapeutics, Lake Forest, United States of America; 3University of Colorado, Denver, United States of America

Background: Gout is a frequent comorbidity in kidney transplant (KT) recipients. However, assessing the independent effect of gout on KT outcomes is difficult because of multiple confounders (e.g., temporal changes in estimated glomerular filtration rate [eGFR], cyclosporine or tacrolimus dose, urate-lowering medication use) that obscure a clear picture of gout’s potential impact.

Objectives: This investigation assessed if the development of new-onset gout after KT was an independent risk factor for loss of graft function, as assessed by the need for maintenance hemodialysis following KT.

Methods: This retrospective cohort study analyzed data on patients in the United States Renal Data System (USRDS) who received a primary KT between 1/1/2008 and 12/31/2015. The date of transplantation was the ‘index’ date. Eligible patients were required to have ≥24 months of Medicare coverage and no prior history of gout, defined as ≥1 claim with a gout diagnosis code in the 24 months prior to the index date. All patients were also required to have ≥12 months of coverage post index. Patients who died, experienced graft failure, or returned to dialysis <12 months post index were excluded. Because the first year following transplant is associated with the highest frequency of rejections, we evaluated subjects beginning 1 year after transplant. The exposure of interest was new-onset gout, defined as the presence of ≥2 claims for gout post index, and the primary endpoint was return to dialysis >12 months post index. Baseline time-invariant confounders included recipient and donor demographics and patient characteristics at index. Time-varying confounders included body mass index (BMI) adjusted tacrolimus and cyclosporine dose, eGFR, and urate-lowering medication use post index. Patients who died or lost Medicare coverage >12 months post index were censored; all patients remaining at the end of the study period (12/31/2016) were also censored. A marginal structural model (MSM) was fitted to determine the relative risk of new-onset gout on return to dialysis, while controlling for both time-varying and time-invariant confounders.

Results: 18,525 of 466,589 KT recipients in the USRDS met study eligibility. Within the observation period, 1,399 (7.6%) developed new-onset gout and 1,420 (7.7%) returned to dialysis >12 months post index. Median time from index to new-onset gout and from index to return to dialysis was 16.2 months (IQR: 33.4) and 32.8 months (IQR: 28.4), respectively. Adjusting for baseline time-invariant and time-varying confounders via the MSM showed new-onset gout was associated with a 51% increased risk of return to dialysis >12 months post index (RR: 1.51, 95% CI: 1.03, 2.20).