Table 1. Distribution of KL grades in the training and testing sets.

<table>
<thead>
<tr>
<th>KL grades</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>1089</td>
<td>4582</td>
<td>6114</td>
<td>3320</td>
<td>799</td>
<td>25,978</td>
</tr>
<tr>
<td>Testing</td>
<td>2472</td>
<td>1535</td>
<td>1696</td>
<td>775</td>
<td>194</td>
<td>6,490</td>
</tr>
</tbody>
</table>

38.1% 20.8% 26.1% 11.9% 3.0%

Table 2. Performance matrices of the Deep-Ten and ResNet18 models to detect osteoarthritis

<table>
<thead>
<tr>
<th></th>
<th>Deep-TEN</th>
<th>ResNet18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>62.29%</td>
<td>59.14%</td>
</tr>
<tr>
<td>Specificity</td>
<td>(95% CI, 60.42%–64.13%)</td>
<td>(95% CI, 57.24%–61.01%)</td>
</tr>
<tr>
<td>Positive predictive value</td>
<td>81.37%</td>
<td>78.04%</td>
</tr>
<tr>
<td>Negative predictive value</td>
<td>77.42%</td>
<td>76.77%</td>
</tr>
</tbody>
</table>

Conclusion: This study demonstrates that the bone texture model performs reasonably well to detect radiographic osteoarthritis with a similar performance to the bone contour model.

References:


Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.2858

OP0063 QUANTITATIVE COMPUTED TOMOGRAPHY PREDICTS 10-YEAR MORTALITY IN INTERSTITIAL LUNG DISEASE RELATED TO SYSTEMIC SCLEROSIS

A. Ariani1, E. Bravi, M. De Santas, V. Hax, S. Parisi, F. Lumetti, F. Girelli, M. Saracco, F. De Gennaro, A. Giolli, M. Abdel Jaber, F. Bozzao, M. Silva, M. C. Ditto, C. Lombati, F. Mozanni, D. Santilli, E. Di Donato, A. Becciolini, F. Pucciarielli, L. Cazzani, F. C. Bodini, E. Arrigoni, M. Bredemeier, R. Mendonça da Silva Chakr, A. Spinella, L. Idolazzi, R. Bortolotti, P. Tomietto, E. Baratella, S. Tollot, D. Giuggioli, F. Fischetti, F. Eufaro, N. Sverzellati, A. C. Scia, AOU, Internal Medicine and Rheumatology Unit, Parma, Italy; Ospedale G. Da Saliceto, Internal Medicine and Rheumatology Unit, Piacenza, Italy; Humanitas Clinical and Research Center, Rheumatology and Clinical Immunology, Rozzano, Italy; University of Rio Grande do Sul, Hospital de Clínicas, Division of Rheumatology, Porto Alegre, Brazil; AOU Città della Salute e della Scienza, Rheumatology Department, Turin, Italy; University of Modena and Reggio Emilia, AOUI, Policlinico, Rheumatology Unit, Modena, Italy; Ospedale GB Morgagni - Ausl, Internal Medicine Unit-Rheumatology Service, Forli, Italy; Ospedale Mauriziano – Umberto I, Rheumatology Unit, Turin, Italy; AO ‘Istituti Ospitalieri’, Rheumatology Unit, Cremona, Italy; University of Verona, AO, Rheumatology Unit, Verona, Italy; Ospedale Santa Chiara, Rheumatology Unit, Trento, Italy; University of Trieste, Cattinara Teaching Hospital, Department of Medical Sciences, Trieste, Italy; University of Parma, Unit of Surgical Sciences, Section of Radiology, Parma, Italy; Ospedale G. Da Saliceto, Radiology Unit, Piacenza, Italy; Hospital Nossa Senhora da Conceição, Rheumatology Service, Porto Alegre, Brazil; ASUI, Department of Radiology, Trieste, Italy; University of Ferrara - AOU Sant'Anna, Section of Rheumatology, Ferrara, Italy

Background: Interstitial lung disease (ILD) is the main cause of death in Systemic Sclerosis (SSc). Chest CT is the gold standard in detecting ILD although it is not easy to understand its prognostic value. ILD qualitative assessment is almost worthless. Goh et al. semi quantitative score of ILD extent is related to mortality risk but it is burdened by relevant inter/inter-readers variability. An operator independent algorithm based on voxel-wise analysis proved to identify SSc patients with an increased risk of mortality according to prediction models.

Objectives: To verify if quantitative analysis of chest CT (QCT) predict 10 years-mortality in SSc patients.

Methods: SSc patients with availability of a chest CT were enrolled in 13 different centers. The CT voxel-wise analysis with a free software (www.horosproject.com) provided QCT indexes: kurtosis, skewness, mean lung attenuation and standard deviation. Patients characteristics, autoimmune profile and pulmonary function test were collected. The follow-up interval lasted from the date of chest CT to the one of the last visit or death. Each QCT index cutoff, established in a previous study (1), clustered patients in two groups. Kaplan-Meier analysis estimated and compared survival in the above mentioned groups, p < 0.05 was considered statistically significant.

Results: Five hundred sixty three SSc patients were enrolled (35938 patient-months); 52.4% had ILD detectable at CT scan. For each QCT index cutoff the cohort was split in two subgroups without differences in terms of sex, age, disease duration, autoimmune profile. All QCT indexes’ cutoff selected subgroups with statistically different survival rate (e.g in Figure 1).

Figure 1

Conclusion: QCT can arise as the new gold standard in identifying SSc patients with poor prognosis. The real possibility to stratify SSc subjects according mortality risk will have a pivotal role in ILD treatment decisional process with the incoming anti-fibrotic drugs.

References:

Disclosure of Interests: Alarico Ariani: None declared, Elena Bravi: None declared, Maria De Santis: None declared, Vanessa Hax: None declared, Simone Parisi: None declared, Federica Lumetti: None declared, Francesco Girelli: None declared, Marta Saracco: None declared, Fabio De Gennaro: None declared, Alessandro Giolli: None declared, Masen Abdel Jaber: None declared, Francesco Bozzao: None declared, Maria Silva: None declared, Maria Chiara Ditto: None declared, Claudia Lomater: None declared, Flavio Mozanni: None declared, Daniele Santilli: None declared, elenora Di Donato: None declared, Andrea Becciolini: None declared, Elisa Baratella: None declared, Saeverio Tolto: None declared, Dilia Giuggioli: None declared, Fabio Fischetti: None declared, Enrico Fusaro: None declared, Nicola Sverzellati: None declared, Carlo Alberto Scirè: None declared

DOI: 10.1136/annrheumdis-2020-eular.2239

OP0064 AUTOMATIC SCORING OF ARTHRITIS DISEASE ACTIVITY ON ULTRASOUND IMAGES FROM RHEUMATOID ARTHRITIS PATIENTS WITH CASCADED CONVOLUTIONAL NEURAL NETWORKS

A. Christensen1, S. A. Just2, J. K. H. Andersen1, T. R. Savarimuthu1, University of Southern Denmark, Maersk Mc-Kinney Moller Institute, Odense, Denmark; Odense University Hospital, Svendborg Hospital - Department of Medicine, Section of Rheumatology, Svendborg, Denmark

Background: Systematic Power or Color Doppler (CD) ultrasound (US) of joints can be used for early detection of Rheumatoid Arthritis (RA), predicting radiographic progression and early detection of disease flare in established
RA [1, 2]. The international standard for performing RA US scanning and evaluation of disease activity is the OMERACT-ELUAR Synovitis Scoring (OESS) system [1, 3]. To further mitigate the operator-dependency in scoring disease activity on CD US images in future trials and clinical practice, we proposed the use of convolutional neural networks (CNN) to automatically grade CD US images according to the OESS definitions. This study is a continuation of the findings in our previous work, where we developed a CNN for four-class CD US OESS scoring with a test accuracy of 75.0% [4].

Objectives: Since our last contribution, we have further developed the architecture of this neural network and can here present a new idea applying a Cascaded Convolutional Neural Network design. We evaluate the generalizability of this method on unseen data, comparing the CNN with an expert rheumatologist.

Methods: The images used for developing the algorithms were graded by a single expert rheumatologist according to the OESS system. The CNNs in the cascade were trained individually, after which they were combined to form the cascade model as shown in figure 1. The algorithms were evaluated on a separate test dataset, which came from the same distribution as the training dataset. The algorithms were compared to the gradings of an expert rheumatologist on a per-joint basis using a Kappa test, and on a per-patient basis using a Wilcoxon Signed Rank test.

Results: With 1678 images available for training and 322 images for testing the model, the model achieved an overall 4-class accuracy of 83.9%. On a per-patient level, there was no significant difference between the classifications of the model and of a human expert (p=0.85).

Conclusion: We have shown that dividing a four-degree classification task into three successive binary classification tasks has resulted in a model capable of making correct classifications in 83.9% of the cases for a test set of ultrasound images with a naturally occurring distribution of RA joint disease activity scores. Furthermore, we have shown that the cascade model can produce classification decisions comparable with a human rheumatologist when applied on a per-patient basis. This emphasizes the potential of using CNNs with this architecture as a strong assistive tool for the objective assessment of disease activity of RA patients.

References:

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2020-eular.888

Table 1. Intraclass Correlation Coefficients (95% Confidence Intervals) and 80% Limits of Agreement for change in BMLs scores in the surgical knee.

<table>
<thead>
<tr>
<th></th>
<th>a) Medical compartment</th>
<th>b) Lateral compartment</th>
<th>c) Medical compartment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0.63 (0.34, 0.81)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.69 (0.43, 0.85)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion: The KIMRiSS can reliably detect differences between femoral BML scores in symptomatic and contralateral limbs, supporting the inter-rater reliability, feasibility and validity of compartment-specific BML scores.

Disclosure of Interests: Jenna Schulz: None declared, Trevor Birming- ham: None declared, Walter P Maksymowych Grant/research support from: Received research and/or educational grants from Abbvie, Novartis, Pfizer,