Results: NZB/W mice at 3 months and 6 months of age exhibit depressive-like disorder as assessed by SPT and TST (P <0.05 and <0.0001, respectively). Anxiety-like phenotype was evident in lupus-prone mice at both time points based on EPM test (Graph 1). Open-field test revealed decreased locomotor activity and rotarod (Graph 2) showed impaired motor coordination in 3 month-old and 6 month-old NZB/W mice, a difference not reaching statistical significance (P=0.78). It was not possible to interpret correctly the PPI at second time point (6 months of age) due to age-related hearing loss in B6 at 6 month-old. NZB/W become more anxious over the course of the disease as assessed by EPM (3 mo. versus 6 mo. P<0.001, paired t-test, Graph 1).

Conclusion: The NZB/W lupus-prone strain exhibit depressive-like behavior, anxiety, cognitive impairment and motor disturbances both at early and late stages of the disease. This polygenic murine model may be more suitable for investigating the autoimmunity-mediated neuroinflammation in human SLE.

Disclosure of Interests: : None declared

DOI: 10.1136/annrheumdis-2020-eular.1807

THU0224 SKIN PROTEOME INVESTIGATION IN CUTANEOUS LUPUS ERYTHEMATOSUS (CLE) REVEALS NOVEL UNIQUE DISEASE PATHWAYS

T. Niewold1, K. Popovic-Silverfeld2, J. Lehman3, A. Meves4, C. Charlesworth5, B. Madden6, A. Hayry7, A. Antovic8, I. E. Lundberg9, M. Wahren-Herlenius9, E. Svenungsson9, Y. Cao10, I. Colton Center for Autoimmunity; New York University, New York, United States of America; 2Karolinska Institutet, Institute for Clinical Sciences at Danderyd Hospital, Stockholm, Sweden; 3Mayo Clinic, Dermatology, Rochester, United States of America; 4Mayo Clinic, Rochester, United States of America; 5Mayo Clinic, Proteomics Core, Rochester, United States of America; 6Karolinska Institutet, Dept of Medicine, Stockholm, Sweden

Background: Cutaneous lupus erythematosus (CLE) is an autoimmune disease. It can be limited to the skin or be one of manifestations of systemic LE (SLE). The typical histopathologic pattern in CLE/SLE is interface dermatitis, which can also be observed in dermatomyositis (DM). While LE may affect any age) due to age-related hearing loss in B6 at 6 month-old. NZB/W become more anxious over the course of the disease as assessed by EPM (3 mo. versus 6 mo. P<0.001, paired t-test, Graph 1).

Conclusion: The NZB/W lupus-prone strain exhibit depressive-like behavior, anxiety, cognitive impairment and motor disturbances both at early and late stages of the disease. This polygenic murine model may be more suitable for investigating the autoimmunity-mediated neuroinflammation in human SLE.

Disclosure of Interests: : None declared

DOI: 10.1136/annrheumdis-2020-eular.1807

THU0225 INTEGRATIVE PLASMA METABOLOME AND TRANSCRIPTOME ANALYSIS REVEALED THE IMPORTANCE OF HISTIDINE HOMEOSTASIS IN SLE PATHOGENESIS WITH POTENTIAL FOR IMPROVED SLE PATIENTS STRATIFICATION

Y. Iwasaki1, Y. Takeshima2, M. Nakano1, M. Ota3, Y. Nagafuchi4, A. Suzuki5, Y. Kochi6, T. Okamura6, T. Endo7, I. Miki8, K. Sakurada9, K. Yamamoto9, K. Fujio1.

1Graduate School of Medicine, The University of Tokyo, Allergy and Rheumatology, Tokyo, Japan; 2Graduate School of Medicine, The University of Tokyo, Functional Genomics and Immunological Diseases, Tokyo, Japan; 3Graduate School of Medicine, The University of Tokyo, Functional Genomics and Immunological Diseases, Tokyo, Japan; 4Center for Integrative Medical Sciences, RIKEN, Yokohama, Laboratory for Autoimmune Diseases, Yokohama, Japan; 5Tokyo Medical and Dental University, Genomic Function and Diversity, Tokyo, Japan; 6Center for Science, Technology Innovation Hub, RIKEN, Medical Sciences Innovation Hub Program, Yokohama, Japan

Background: Recently, immunometabolism has gathered attention of many immunologists. It has been widely recognized that metabolic reprogramming in each immune cell brings different effects on different cells and is important for regulating their functions. Along with the progress of statistical genetics, serum metabolites were shown to be under genetic regulations1). Metabolic changes are now considered not only to be mere phenotypes of cells but also to be key factors for controlling immune cell differentiation, proliferation and function through regulating gene expressions eventually. Although genome-wide association studies have brought deep insights into SLE pathogenesis, the precise pathway from genome to metabolome has been largely unknown, and vice versa.

Objectives: The aim of this study is to investigate metabolic regulation in SLE in relation to gene expressions by integrating plasma metabolome data and transcriptome data.

Methods: We collected plasma samples from patients with SLE (n=57) who met the 1997 American College of Rheumatology criteria for SLE. Gender- and age-matched healthy controls (HCs) (n=56) were recruited. Metabolic profiles focusing on 39 amino acids were analyzed with liquid chromatography (LC)-mass spectrometry. Transcriptome data of SLE patients were obtained from our RNA-sequencing data of each immune cell subset (total 19 subsets). Whole-genome sequencing was also performed.

Results: Our previous experiment showed that about 160 peaks were detected from comprehensive LC-TOFMS and amino acids were useful for distinguishing SLE patients from HCs. Both partial least squares discriminant analysis (PLS-DA) and random forest, a machine learning algorithm, revealed the importance of histidine (His), one of the essential amino acids, to classify SLE patients from HCs, whose plasma level was lower in SLE patients. In addition, inverse correlation between His level and titer of ds-DNA as well as damage index (SDI) was detected. His level was correlated neither with PSL dosage nor with type I interferon (IFN) signature. Receiver operating characteristic (ROC) analysis showed the best predictability for SLE with the combination of specific amino acids including His. Our transcriptome analysis has revealed the significance of oxidative phosphorylation (OXPHOS) in B cells for SLE pathogenesis. Interestingly, OXPHOS signature was inversely correlated with His level in SLE B cells.

Conclusion: His may be an important factor for SLE pathogenesis especially in B cells independently from IFN signal. SLC15A4, a transporter of His on lysosome, is one of the SLE GWAS SNPs and has been reported to play an

Disclosure of Interests: : Timothy Niwold: None declared, Karin Popovic-Silverfeld: None declared, Julia Lehman: None declared, Alexander Meves: None declared, Cristine Charlesworth: None declared, Benjamin Madden: None declared, Alisa Hayry: None declared, Aleksandra Antovic: None declared, Ingrid E. Lundberg Grant/research support from: Bristol-Myers Squibb, Corbus Pharmaceuticals, Inc and Astra Zeneca, Marie Wahren-Herlenius: None declared, Elisabet Svenungsson: None declared, Vilija Oke: None declared

DOI: 10.1136/annrheumdis-2020-eular.5948