None declared, Selim Aractangi: None declared, Beatrice Banville-Speakers bureau: Lilly, Novartis, Laurent Beaugerie: None declared, Francis Berenbaum Grant/research support from: TRB Chemedica (through institution), MSD (through institution), Pfizer (through institution). Consultant of: Novartis, MSD, Pfizer, Lilly, UCB, Abbvie, Roche, Servier, Sanofi-Aventis, Flexion Therapeutics, Expanscience, GSK, Biogen, Nordic, Sandrod, Regeneron, Gilead, Bone Therapeutics, Regulaxis, Peptinov, 4P Pharma, Paid instructor for: Sandzod, Speaks bureau: Novartis, MSD, Pfizer, Lilly, UCB, Abbvie, Roche, Servier, Sanofi-Aventis, Flexion Therapeutics, Expanscience, GSK, Biogen, Nordic, Sanodregeneron, Gilead, Sandrod, Julien Champs; None declared, Olivier Chazouilleres: None declared, Christophe Corpechot: None declared, Bruno Fautrel Grant/research support from: Abbvie, Lilly, MSD, Pfizer, Consultant of: Abbvie, Biogen, BMS, Boehringer Ingelheim, Celgene, Lilly, Janssen, Medac MSD France, Nordic Pharma, Novartis, Pfizer, Roche, Sanofi Aventis, SOBI and UCB, Anse Meakin: None declared, Eodie Regnier: None declared, David Sandou: None declared, Joe-Ellie Salem: None declared, Jeremie Sellam: None declared, Philippe Seksik: None declared, David Kitzmann Consultant of: LTL0 Pharma

DOI: 10.1136/annrheumdis-2020-eular.2743

THU0052

RELATIONSHIP BETWEEN INTERFERON-G-PRODUCING IMMUNOCOMPETENT CELLS AND DISEASE ACTIVITY IN ADULT-ONSET STILL’S DISEASE

Y. Shimojima1, D. Kishida1, T. Ichikawa1, Y. Sekijima1. 1Shinshu University School of Medicine, Department of Medicine (Neurology and Rheumatology), Matsumoto, Japan

Background: In the acute phase of adult-onset Still’s disease (AOSD), elevated levels of interferon-gamma (IFN-γ) expression in NK cells and CD4+ T cells were noted. Moreover, IFN-γ impacts on activating macrophages which play a crucial role in the pathogenesis of AOSD. Natural killer (NK) cells and T helper cells are in charge of secreting IFN-γ in the innate and adaptive immune systems of disease, respectively. However, the features of their IFN-γ-producing variation depending on disease activity are still uncertain in AOSD.

Objectives: We investigated characteristics of IFN-γ-producing CD4+ T cells and NK cells in patients with AOSD.

Methods: Twenty-four patients in the acute phase of AOSD (active AOSD), 8 of them after treatment (remission), and 12 healthy controls (HC) were recruited in this study. Peripheral blood mononuclear cells and serum samples were provided from them for the experimental analysis. Flow cytometry was used for analyzing CD4+ T cells, CD4+ regulatory T cells (Tregs), NK cells, and their intracellular IFN-γ expression levels as well as suppression assay of Tregs. The serum concentration of interleukin-18 (IL-18) was measured using commercially available ELISA kit. Relationship between the analyzed data and clinical findings related to disease activity were statistically evaluated.

Results: IFN-γ expression in CD4+ T cells was significantly higher in active AOSD than in HC (p < 0.05). Tregs also significantly indicated higher expression of IFN-γ in active AOSD (p < 0.0001), whereas CD56bright NK cells were significantly impaired in their suppression ability (p < 0.05). In both CD4+ T cells and Tregs, expression of IFN-γ was significantly correlated with serum ferritin levels in active AOSD (p < 0.05). IFN-γ expression in CD4+ T cells was significantly higher in patients with splenomegaly than those without that (p < 0.05). The proportion of NK cells was significantly lower in active AOSD than in HC (p < 0.005), whereas IFN-γ expression in NK cells was significantly higher in active AOSD than in HC (p < 0.0005). The number of NK cells and IFN-γ expression showing inverse relationship were serum ferritin levels in active AOSD (p < 0.05 and p < 0.005, respectively). Increased number of NK cells and their decreased expression of IFN-γ were significantly demonstrated in remission (p < 0.05). In the analyses of NK cell subsets, lower expression of IFN-γ in CD56dim NK cells was noted in patients in remission. In CD56brigh NK cells, the expression of IFN-γ was significantly lower in active AOSD than in HC (p < 0.05). In remission, IFN-γ expression was significantly decreased in CD56brigh NK cells (p < 0.05) despite no significant recovery of that in CD56int NK cells (p = 0.311). Meanwhile, increased expression of IFN-γ in CD56brigh NK cells was demonstrated in only patients who were treated with biologics. Although serum levels of IL-18 were significantly higher in active AOSD than in remission and HC, however, they had no significant correlations with any analyzed data.

Conclusion: CD4+ T cells and NK cells promote IFN-γ expression in the acute phase of AOSD. Meanwhile, increased expression of IFN-γ in CD4+ T cells and decreased number of NK cells were correlated with serum ferritin levels, suggesting that they are indicators of disease activity. Furthermore, high disease activity may impact on the alteration of IFN-γ-producing balance in two distinct population of NK cells, and the plasticity of Tregs leading to defect in suppression ability.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.1817

THU0053

CONTRIBUTION OF DEFECTIVE NON-APOPTOTIC FAS SIGNALING TO IMMUNE DYSREGULATION IN AUTOIMMUNE LYMPHOBLASTOMATOUS SYNDROME (ALPS)


1University Medical Center Freiburg, Department of Rheumatology and Clinical Immunology, Freiburg, Germany; 2Charles University, Prague, Department of Paediatric Haematology and Oncology, Prague, Czech Republic; 3University Medical Center Freiburg, Institute of Medical Bioinformatics and System Medicine, Freiburg, Germany; 4Cancer Research Center, Universidad de Salamanca, Salamanca, Spain; 5European Molecular Biology Laboratory, Heidelberg, Germany; 6Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain; 7University Hospital Nöcker-Enfants Malades, Paris, France; 8Instituto de Biomedicina de Sevilla, Sevilla, Spain; 9Hospital Sant Joan de Déu Barcelona, Barcelona, Spain; 10Hospital Universitario 12 de Octubre, Department of Immunology, Barcelona, Spain; 11University Hospital 12 de Octubre, Department of Pediatrics, Barcelona, Spain; 12University Medical Center Freiburg, Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Freiburg, Germany; 13University Medical Center Freiburg, Department of Pathology, Freiburg, Germany; 14Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany; 15University of Lausanne, Lausanne, Switzerland; 16Consejo Nacional de Investigaciones Científicas y Técnicas, Medical Physics Department, San Carlos de Bariloche, Argentina

Background: ALPS patients show impaired generation of humoral memory for T independent antigens whereas they generate memory for self-antigens due to impaired FAS-dependent removal of autoactive germinal center B cells. It is known that FAS signaling via caspase activation results in cell apoptosis. However, FAS ligation may also initiate or modulate non-apoptotic signaling as shown for example by its ability to activate NF-κβ. Recent data implicate a regulatory role of FAS in the modulation of mTOR signaling in ALPS double-negative T cells. Moreover, a recently described C194V FAS mutation disturbs its post-translational modification leading to impaired apoptosis induction while non-apoptotic signaling is still intact. Consequently, C194V FAS protects from the autoimmune phenotype in the murine ALPS system. This supports the view that FAS may prevent autoimmunity with other mechanisms than inducing apoptosis.

Objectives: We hypothesize that FAS mutations impair this modulatory signaling, leading to hyper-activation of B cells. Therefore we aim to investigate non-apoptotic FAS signaling in B cells derived from healthy individuals and ALPS patients.

Methods: We studied resting and activated B cells in ALPS patients in presence or absence of FAS ligation. FACS analysis, flow cytometry, and proteomic analysis were performed to identify potential signaling circuits and RNA sequencing to study the consequences of FAS signaling on B cell fate.

Results: In CD40L activated B cells, FAS signaling results in specific modulation of the mTOR signaling pathway. This modulation is absent in ALPS derived B cells. In line with these data germinal center B cells and plasmablast from secondary lymphoid organs of ALPS patients show hyperactive mTOR signaling pathway. Proteomic studies identify a circuit that links FAS to the phosphatase PTEN via DAXX and the deubiquitinase USP7.

Conclusion: We describe a new role of FAS in the regulation of B cell activation. Defects in FAS signaling in ALPS contribute to dysregulation of the mTOR signaling pathway and disturbed B cell development.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.5733

THU0054

NKTR-358, A NOVEL IL-2 CONJUGATE, STIMULATES HIGH LEVELS OF REGULATORY T CELLS IN PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS

S. Siddhanti1, C. Fanton1, N. Dixit1, L. Lu2, V. Chindalore2, R. Levin1, I. Diab2, R. Furie3, J. Zalevsky4, B. Kotzin5, 1Nektar, San Francisco, United States of America; 2Pinnacle Research Anniston, United States of America; 3Cancer Research, West Florida, Clearwater, United States of America; 4Paramount Medical Research, Middleburg Heights, United States of America; 5Northwell Health, Great Neck, United States of America

Background: Impaired IL-2 production and dysfunction of regulatory T cells (Tregs) have been identified as key immunological defects leading to the breakdown of immune self-tolerance in SLE. Low-dose IL-2 can expand Tregs, but

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.1817