None declared, Selim Aractangi; None declared, Beatrice Banville Speakers bureau: Lilly, Novartis, Laurent Beaugerie: None declared, Francis Berenbaum Grant/research support from: TRB Chemedica (through institution), MSD (through institution), Pfizer (through institutional). Consultant of: Novartis, MSD, Pfizer, Lilly, UCB, Abbvie, Roche, Servier, Sanofi-Aventis, Flexion Therapeutics, Expanscience, GSK, Biogen, Nordic, Sandzio, Regeneron, Gilead, Bone Therapeutics, Regulaxis, Peptinov, 4P Pharma, Paid instructor for: Sandzio, Speakers bureau: Novartis, MSD, Pfizer, Lilly, UCB, Abbvie, Roche, Servier, Sanofi-Aventis, Flexion Therapeutics, Expanscience, GSK, Biogen, Nordic, Sandzio; in CD56bright NK cells. None declared, Olivier Chauzillères: None declared, Christophe Corpechot: None declared, Bruno Fautrel Grant/research support from: AbbVie, Lilly, MSD, Pfizer, Consultant of: AbbVie, Biogen, BMS, Boehringer Ingelheim, Celgene, Lilly, Janssen, Medac MSD France, Nordic Pharma, Novartis, Pfizer, Roche, Sanofi Aventis, SOBI and UCB, Anese Meakin: None declared, Elodie Regnier: None declared, David Saadoun: None declared, Joe-Elie Salmon: None declared, Jérémie SELAM: None declared, Philippe Seksi: None declared, David Klattzman Consultant of: LTOO Pharma

DOI: 10.1136/annrheumdis-2020-eular.2743

THU0052

RELATIONSHIP BETWEEN INTERFERON-γ-PRODUCING IMMUNOCOMPETENT CELLS AND DISEASE ACTIVITY IN ADULT-ONSET STILL’S DISEASE

Y. Shimojima1, D. Kishida1, T. Ichikawa1, Y. Sekijima2, Shinshu University School of Medicine, Department of Medicine (Neurology and Rheumatology), Matsumoto, Japan

Background: In the acute phase of adult-onset Still’s disease (AOSD), elevated levels of proinflammatory cytokines including interferon-γ (IFN-γ) are shown. Moreover, IFN-γ impacts on activating macrophages which play a crucial role in the pathogenesis of AOSD. Natural killer (NK) cells and T helper cells are in charge of secreting IFN-γ in the innate and adaptive immune systems of disease, respectively. However, the features of their IFN-γ-producing variation depending on disease activity are still uncertain in AOSD.

Objectives: We investigated characteristics of IFN-γ-producing CD4+ T cells and NK cells in patients with AOSD.

Methods: Twenty-four patients in the acute phase of AOSD (active AOSD), 8 of them after treatment (remission), and 12 healthy controls (HC) were recruited in this study. Peripheral blood mononuclear cells and serum samples were provided from them for the experimental analysis. Flow cytometry was used for analyzing CD4+ T cells, CD4+ regulatory T cells (Tregs), NK cells, and their intracellular IFN-γ expression levels as well as suppression assay of Tregs. The serum concentration of interleukin-18 (IL-18) was measured using commercially available ELISA kit. Relationship between the analyzed data and clinical findings related to disease activity were statistically evaluated.

Results: IFN-γ expression in CD4+ T cells was significantly higher in active AOSD than in HC (p < 0.05). Tregs also significantly indicated higher expression of IFN-γ in active AOSD than in HC (p = 0.0001); and moreover, CD4+ T cells and Tregs, expression of IFN-γ was significantly correlated with serum ferritin levels in active AOSD (p < 0.05). IFN-γ expression in CD4+ T cells was significantly higher in patients with splenomegaly than those without that (p < 0.05). The proportion of NK cells was significantly lower in active AOSD than in remission and HC; however, they had no significant correlation with disease activity.

Conclusion: CD4+ T cells and NK cells promote IFN-γ expression in the acute phase of AOSD. Meanwhile, increased expression of IFN-γ in CD4+ T cells and decreased number of NK cells were correlated with serum ferritin levels, suggesting that they are indicators of disease activity. Furthermore, high disease activity may impact on the alteration of IFN-γ-producing balance in two distinct populations of NK cells, and the plasticity of Tregs leading to defect in suppression ability.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.1817

THU0053

CONTRIBUTION OF DEFECTIVE NON-APOPTOTIC FAS SIGNALING TO IMMUNE DYSREGULATION IN AUTOIMMUNE LYMPHOBLASTOID PROLIFERATIVE SYNDROME (ALPS)

1Shinshu University School of Medicine, Department of Medicine (Neurology and Rheumatology), Matsumoto, Japan; 2Pinnacle Research, Anniston, United States of America; 3University of Lausanne, Lausanne, Switzerland; 4University of Sevilla, Sevilla, Spain; 5Hospital Sant Joan de Déu Barcelona, Barcelona, Spain; 6Instituto de Biomedicina de Sevilla, Sevilla, Spain; 7Hospital Sant Joan de Déu Barcelona, Barcelona, Spain; 8Hospital Universitario 12 de Octubre, Department of Immunology, Madrid, Spain; 9University Hospital 12 de Octubre, Department of Pediatrics, Madrid, Spain; 10University Medical Center Freiburg, Department of Rheumatology, Freiburg, Germany; 11University Medical Center Freiburg, Department of Paediatric Haematology and Oncology, Prague, Czech Republic; 12University Medical Center Freiburg, Department of Medical Bioinformatics and System Medicine, Freiburg, Germany; 13Cancer Research Center, Universidad de Salamanca, Salamanca, Spain; 14European Molecular Biology Laboratory, Heidelberg, Germany; 15Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain; 16University Hospital Nocker-Enfants Malades, Paris, France; 17Instituto de Biomedicina de Sevilla, Sevilla, Spain; 18University Hospital Nocker-Enfants Malades, Paris, France; 19Instituto de Biomedicina de Sevilla, Sevilla, Spain

Background: ALPS patients show impaired generation of humoral memory for T independent antigens whereas they generate memory for self-antigens due to impaired FAS-dependent removal of autoreactive germinal center B cells. It is known that FAS signaling via caspase activation results in cell apoptosis. However, FAS ligation may also initiate or modulate non-apoptotic signaling as shown for example by its ability to activate NF-κB. Recent data implicate a regulatory role of FAS in the modulation of mTOR signaling in ALPS double-negative T cells. Moreover, a recently described C194V FAS mutation disturbs its post-translational modification leading to impaired apoptosis induction while non-apoptotic signaling is still intact. Consequently, C194V FAS protects from the autoimmune phenotype in the murine ALPS system. This supports the hypothesis that FAS may prevent autoimmunity with other mechanisms than inducing apoptosis.

Objectives: We hypothesize that FAS mutations impair this modulatory signaling, leading to hyper-activation of B cells. Therefore we aim to investigate non-apoptotic FAS signaling in B cells derived from healthy individuals and ALPS patients.

Methods: We studied resting and activated B cells in ALPS patients in presence or absence of FAS ligand by flow cytometry analysing relevant molecules to the CD40 signaling pathway. We used mass cytometry to perform functional phenotyping of B cells isolated from secondary lymphoid organs. Proteomic studies were performed to identify potential signaling circuits and RNA sequencing to study the consequences of FAS signaling on B cell fate.

Results: In CD40L activated B cells, FAS signaling results in specific modulation of the mTOR signaling pathway. This modulation is absent in ALPS derived B cells. In line with these data germinal center B cells and plasmablast from secondary lymphoid organs of ALPS patients show hyperactive mTOR signaling pathway. Proteomic studies identify a circuit that links FAS to the phosphatase PTEN via DAXX and the deubiquitinase USP7.

Conclusion: We describe a new role of FAS in the regulation of B cell activation. Defects in FAS signaling in ALPS contribute to dysregulation of the mTOR signaling pathway and disturbed B cell development.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.5733

THU0054

NKR-358, A NOVEL IL-2 CONJUGATE, STIMULATES HIGH LEVELS OF REGULATORY T CELLS IN PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS

S. Siddhanti1, C. Fannon1, N. Dixit1, L. Lu1, V. Chindalore2, R. Levin1, I. Diab1, R. Furie3, J. Zalewsky2, B. Kozjin3, 1Nektar, San Francisco, United States of America; 2Pinnacle Research, Anniston, United States of America; 3Clinical Research of West Florida, Clearwater, United States of America; 4Paramount Medical Research, Middleburg Heights, United States of America; 5Northwell Health, Great Neck, United States of America

Background: Impaired IL-2 production and dysfunction of regulatory T cells (Tregs) have been identified as key immunological defects leading to the breakdown of immune self-tolerance in SLE. Low-dose IL-2 can expand Tregs, but...
the effect is limited by a narrow therapeutic window for Treg selectivity. Furthermore, the short half-life of IL-2 necessitates frequent administration. NKTR-358 is a polyethylene glycol (PEG) conjugate of recombinant human IL-2 (aldesleukin sequence) and is differentiated from native IL-2 by its altered binding to the IL-2 receptor and prolonged biological activity. NKTR-358 resulted in marked and selective stimulation of Tregs when administered as a single SC injection to healthy volunteers.

Objectives: This multiple ascending dose study assessed the safety, tolerability, pharmacokinetics (PK), and immune effects of NKTR-358 in patients with SLE after repeated administration of SC doses. The time course and extent of changes in numbers and percentages of Tregs, conventional CD4+ and CD8+ T cells, NK cells, and cytokine levels in peripheral blood were investigated.

Methods: In this double-blind, multiple ascending dose study, patients with mild to moderate SLE received 3 SC doses q2w in 4 cohorts ranging from 3.0 to 24.0 µg/kg (9 active:3 placebo per cohort); patients were followed for a total of 79 days.

Results: There were no dose-limiting toxicities, deaths, or clinically significant abnormalities in either vital signs or electrocardiograms. Adverse events attributed to NKTR-358 were primarily limited to mild (grade 1) injection site reactions. At the highest dose, one subject had transient and mild (grade 1) symptoms of a flu-like syndrome after administration, without associated elevated cytokine levels, and another subject had dosing stopped due to elevated eosinophil levels. No changes in the percentage or number of conventional CD4+ or CD8+ T cells were observed at any dose tested. At the highest dose, there were low-level increases in the percentages and numbers of NK cells. Overall, NKTR-358 selectively induced Tregs, evidenced by a 12-fold increase in the mean peak Treg:CD8 ratio over baseline in the 24.0 µg/kg group.

Conclusion: NKTR-358, an IL-2 conjugate Treg stimulator, was well tolerated when repeated administered (q2w) at doses up to 24 µg/kg. Its administration led to marked, selective, prolonged, and dose-dependent increases in circulating CD4+FoxP3+CD25high Tregs were observed. Treg levels remained elevated throughout the dosing period, peaking at Day 10 after the first administration of NKTR-358 and returning to baseline ~20–30 days following last administration. At 24.0 µg/kg, the mean peak increase in numbers of CD25high Tregs was 11-fold above baseline. In addition, there was an increase in Treg activation markers at doses ≥12.0 µg/kg. In contrast to effects on Tregs, no changes in percentages or numbers of conventional CD4+ or CD8+ T cells were observed at any dose tested. At the highest dose, there were low-level increases in the percentages and numbers of NK cells. Overall, NKTR-358 selectively induced Tregs, evidenced by a 12-fold increase in the mean peak Treg:CD8 ratio over baseline in the 24.0 µg/kg group.

Disclosure of Interests: Suresh Siddhanti Shareholder of: Nektar Therapeutics, Employee of: Nektar Therapeutics, Christie Fenton Shareholder of: Nektar Therapeutics, Employee of: Nektar Therapeutics, Neha Dixit Shareholder of: Nektar Therapeutics, Employee of: Nektar Therapeutics, Lin Lu Shareholder of: Nektar Therapeutics, Employee of: Nektar Therapeutics, Vishala Chindalore Grant/research support from: Nektar Therapeutics for conducted studies, Speakers bureau: > 5 years ago, Robert Levin Grant/research support from: Payments for clinical research for industry-sponsored trials, Consultant of: Gilead, Exagen, Myriad Rheumatology, Speakers bureau: Sanofi/Genezyme, Regeneron, Bristol-Myers Squibb, AbbVie, Isam Diab: None declared, Richard Furie Grant/research support from: Nektar Therapeutics to Northwell Rheumatology to conduct this study, Consultant of: Nektar Therapeutics, Jonathan Zalevsky Shareholder of: Nektar Therapeutics, Employee of: Nektar Therapeutics, Brian Kotzin Shareholder of: Nektar Therapeutics, Employee of: Nektar Therapeutics

DOI: 10.1136/annrheumdis-2020-eular.3165

THU0055

ANTI-DEGRADATIVE AND PRO-CHONDROGENIC PROPERTIES OF LIRAGLUTIDE, A GLUCAGON-LIKE-PEPTIDE 1 RECEPTOR AGONIST: EVIDENCE FROM PRECLINICAL STUDIES AND IMPLICATION FOR OSTEOARTHRITIS

F. Berenbaum 1, C. Meurot 2, J. Breton 2, L. Sudre 2, C. Bougault 2, R. Rattenbach 2, C. Martin 2a, C. Jacques 2a. 1APHP, Sorbonne University, Rheumatology 2Department, INSERM UMR 938, CDR St-Antoine Paris, Paris, France 1APHP, Lille, France; 2Sorbonne University, INSERM UMR 938, CDR St-Antoine Paris, Paris, France

Background: Osteoarthritis (OA) is a degenerative joint disease affecting millions of individuals worldwide. Its development has been reported to be associated with cartilage degradation and inflammatory responses leading to pain, swelling and reduced function. Although OA is a disorder of the whole joint, the progressive destruction of cartilage extracellular matrix is considered as its hallmark. To date, approved OA treatments are only symptomatic. Therefore, there is an urgent need to explore disease-modifying OA drugs (DMOADs) that can mitigate, stop, or even reverse the development of OA.

Objectives: In this context, the objective of this study was to assess the effect of liraglutide, a Glucagon-Like-Peptide 1 Receptor (GLP-1R) agonist approved for type 2 diabetes, on chondrogenesis, cartilage degradation/inflammation and cartilage protection in in vitro and in vivo preclinical models of OA.

Methods: The capacity of liraglutide to induce chondrogenesis was evaluated using primary human mesenchymal stem cells (hMSCs). Alcian blue staining was used to assess differentiation of hMSC into cartilage spheroids. IL-1β-stimulated mouse articular chondrocytes were treated with different concentrations of liraglutide for 24h. Production of matrix metalloproteinase MMP-13, prostaglandin E2 (PGE2) and nitrite was measured by ELISA and Griess reaction, respectively. Exendin 9-39, a GLP-1R antagonist, was used to confirm target engagement in the in vitro experiments. Intra-articular (IA) injections of liraglutide or vehicle were performed in the type II collagenase rat model. Histopathological analyses (OARSI scores) 14 days after treatment were conducted blindly by one investigator.

Results: Liraglutide induced the differentiation of hMSCs into chondrocytes. Indeed, 21 days after differentiation initiation, 5/6 and 4/6 alcian-blue positive spheroids were observed for 10 and 100nM liraglutide, respectively, versus 0/6 for vehicle. Liraglutide significantly reduced dose-dependently the IL-1β-induced production of PGE2 (5808±178 for vehicle vs 4560±140, 2393±171 and 2365±85 pg/ml for liraglutide 10, 100 and 500nM, respectively, p≤0.001), nitrite (24±0.4 for vehicle vs 19±1.5, 19±1.0 and 16±0.5 µM for liraglutide 10, 100 and 500nM, respectively, p≤0.001) and MMP-13 (686±9 for vehicle vs 553±3, 402±5 and 297±8 pg/ml for liraglutide 10, 100 and 500nM, respectively, p≤0.001) in murine chondrocytes. Effects of liraglutide were GLP-1R dependent since exendin 9-39 significantly counterbalanced both chondrogenesis and inflammation/catabolism markers expression. Histological assessment of rat collagenase-injected knee joint revealed a significant (p≤0.05) decrease of the total joint score in the IA Liraglutide treated group (8±4) compared to vehicle (11±4).

Conclusion: Liraglutide induced chondrogenesis, decreased metalloproteinase and inflammatory mediators production by chondrocytes and protected cartilage in in vitro and in vivo preclinical OA models, opening the way for repositioning this drug as a potential DMOAD.

References:

Acknowledgments: All the people who contributed to the InOsteo project: the members of 4P-Pharma, INSERM UMR S938 research team, SATT Lutech and Sorbonne University

Disclosure of Interests: Francis Berenbaum Grant/research support from: TRB Chemedica (through institution), MSD, Pfizer, Lilly, UCB, Abbvie, Roche, Servier, Sanofi-Aventis, Flexion Therapeutics, Expanscience, GSK, Biogen, Nordic, Sandoz, Regeneron, Gilead, Bone Therapeutics, Regulaxis, Peptinov, 4P Pharma, Paid instructor for: Sandoz, Speakers bureau: Novartis, MSD, Pfizer, Lilly, UCB, Abbvie, Roche, Servier, Sanofi-Aventis, Flexion Therapeutics, Expanscience, GSK, Biogen, Nordic, Sandoz, Regeneron, Gilead, Sandoz, Corail Meurot Shareholder of: 4P-Pharma, Employee of: 4P-Pharma, Laure Sudre: None declared, Carole Bougault: None declared, Revital Rattenbach Shareholder of: 4P-Pharma, Employee of: 4P-Pharma, Claire Martin Employee of: 4P-Pharma, Claire Jacques: None declared

DOI: 10.1136/annrheumdis-2020-eular.4606

THU0056

SMO475S, A POTENTIAL DISEASE-MODIFYING TREATMENT FOR TENDINOPATHY, MODULATES THE WNT PATHWAY VIA INHIBITION OF CKLS AND DYRK1A

V. Deshmukh 1, A. O’Green 1, T. Seo 2, Y. Yazici 1, 1Samumed, LLC, San Diego, United States of America

Background: Tendinopathy is an inflammatory and degenerative disorder of tendons caused by injuries and/or overuse. Left untreated, tendinopathy can lead to pain and rupture. Current therapeutic options only treat symptoms. Stem cell- and growth factor-based treatments are under investigation but have not