IL21-expressing T follicular (Tfh) and peripheral helper (Tph) cells measured by FC. These generated Tfh cells were also cultured in the presence of memory B cells. After 5 days of co-culture, plasmablast generation and IgG levels were assessed by FC and ELISA, respectively. Inhibition of OX40-OX40L interaction in vitro was achieved using ISB 830, a novel anti-OX40 mAb currently used in clinical trials.

Results: Among the co-stimulatory molecules tested, percentages of OX40L+ neutrophils in SLE (n=54) were increased compared to HD (n=25) (mean ± SD: HD = 1.34 ± 1.62 vs SLE = 4.53 ± 8.1; p=0.29). OX40L expression positively correlated with SLE disease activity score (SLEDAI) (p = 0.04; r = 0.31) and with anti- DNA antibodies (p=0.04, r = 0.33). Of note, the percentage of OX40L+ neutrophils was higher in anti-sm-RNP+ patients (n=16, mean= 9.8±9) compared to anti-sm-RNP patients (n=27, mean = 1.4±2.5; p = 0.02). The percentage of OX40L+ neutrophils was higher in patients with class III or IV lupus nephritis, and inflammatory infiltrate within the kidney biopsy disclosed OX40L+ neutrophils, in close contact with T cells. Neutrophils from HD express OX40L with TLR8 agonist, or antibodies (p= 0.04, r = 0.33). Of note, the percentage of OX40L+ neutrophils was higher in patients with class III or IV lupus nephritis, and inflammatory infiltrate within the kidney biopsy disclosed OX40L+ neutrophils, in close contact with T cells. Neutrophils from HD express OX40L with TLR8 agonist, or antibodies (p= 0.04, r = 0.33).

Conclusion: OX40L+ neutrophils were amplified by in vitro treatment with the anti-OX40 blocking antibody ISB 830, which inhibited the differentiation of memory T cells into Tfh and Tph. Both generated Tfh and Tph were able to promote the differentiation of memory B cells into Ig-secreting plasmablasts.

References:

[2] Jacquemin et al. JCI Insight 2018

Disclosure of Interests: Angela Pappalardo Grant/research support from: Ichnos Sciences, Elobie Wojciechowski: None declared, Itsuko O’Toole: None declared, Isabelle Douchet: None declared, Nathalie Merillon: None declared, Andrea Boizard-Moracchini: None declared, Pierre Duffau: None declared, Isabelle Douchet: None declared, Nathalie Merillon: None declared, Andrea Boizard-Moracchini: None declared, Pierre Duffau: None declared, Isabelle Douchet: None declared, Nathalie Merillon: None declared.

Background: Donor-specific anti-HLA antibodies (DSAs) are antibodies in the recipient directed against donor class I/II HLA antigens. The existence of DSAs before allogeneic hematopoietic stem cell transplantation (HSCT) are known to cause primary graft failure. Currently there's no established method of DSA desensitization due to the long half-life of plasma cells.

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease involving in multiple organ systems mediated by numerous autoantibodies. Recent results have shown that depletion of B cells by CD19 CAR-T cells does not reverse some manifestations in two SLE mouse models. However, plasma cells could be spared with single CD19 CAR-T cells, and peripheral circulating anti-DNA IgG and IgM autoantibodies remain elevated or increased in treated mice.

Objectives: We present the efficacy of BCMA-CD19 compound CAR (cCAR), which target on antibody-producing "root", both B cells and plasma cells in pre-clinical study and in our first-in-human phase 1 clinical trial.

Methods: We constructed a BCMA-CD19:CAR composed of a complete BCMA-CAR fused to a complete CD19 CAR, separated by a self-cleaving P2A peptide. We assessed the functional activity of CAR in co-culture assay with multiple cell lines. We also verified cCAR efficacy with two mouse models, injected with either BCMA-expressing MM.1S cells or CD19-expressing REH cells. In our phase 1 clinical trial, we enrolled patients with hematologic malignancies with antibody mediated disorders.

Results: BCMA-CD19 cCAR exhibited robust cytotoxic activity against the K562 cells engineered to express either CD19 or BCMA in co-culture assays, indicating the ability of each complete CAR domain to specifically lyse target cells. In mouse model study, cCAR-T cells were able to eliminate tumor cells in mice injected with MM.1S cells and REH cells, indicating that both BCMA and CD19 are specifically and equally lysing B cells and plasma cells in vivo, making BCMA-CD19 cCAR a candidate for clinical use.

Acknowledgments: patients and their families

Disclosure of Interests: Fang liu: None declared, Hongyu Zhang: None declared, Xiao Wang: None declared, Jia Feng: None declared, Yuanzhen cao Employee of: Employee of iCell Gene Therapeutics LLC, Yi Su: None declared, Masayuki Wada Employee of: employee of iCell Gene Therapeutics LLC, Yu Ma Employee of: employee of iCAR Bio Therapeutics Ltd, Yupo Ma Shareholder of: shareholder of iCell Gene Therapeutics LLC

Conclusion: Our first in human clinical trial on BCMA-CD19 cCAR demonstrated profound efficacy in reducing DSA levels in an HSCT candidate and ANA titer in a SLE patient. There was strong clinical evidence of depletion of antibody-producing roots, B-cells and plasma cells in both patients. Our results further suggested that BCMA-CD19 cCAR has the potential to benefit patients receiving solid organ transplants or those with other antibody-mediated diseases.

Background: Donor-specific anti-HLA antibodies (DSAs) are antibodies in the recipient directed against donor class I/II HLA antigens. The existence of DSAs before allogeneic hematopoietic stem cell transplantation (HSCT) are known to cause primary graft failure. Currently there's no established method of DSA desensitization due to the long half-life of plasma cells.

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease involving in multiple organ systems mediated by numerous autoantibodies. Recent results have shown that depletion of B cells by CD19 CAR-T cells does not reverse some manifestations in two SLE mouse models. However, plasma cells could be spared with single CD19 CAR-T cells, and peripheral circulating anti-DNA IgG and IgM autoantibodies remain elevated or increased in treated mice.

Objectives: We present the efficacy of BCMA-CD19 compound CAR (cCAR), which target on antibody-producing "root", both B cells and plasma cells in pre-clinical study and in our first-in-human phase 1 clinical trial.

Methods: We constructed a BCMA-CD19:CAR composed of a complete BCMA-CAR fused to a complete CD19 CAR, separated by a self-cleaving P2A peptide. We assessed the functional activity of CAR in co-culture assay with multiple cell lines. We also verified cCAR efficacy with two mouse models, injected with either BCMA-expressing MM.1S cells or CD19-expressing REH cells. In our phase 1 clinical trial, we enrolled patients with hematologic malignancies with antibody mediated disorders.

Results: BCMA-CD19 cCAR exhibited robust cytotoxic activity against the K562 cells engineered to express either CD19 or BCMA in co-culture assays, indicating the ability of each complete CAR domain to specifically lyse target cells. In mouse model study, cCAR-T cells were able to eliminate tumor cells in mice injected with MM.1S cells and REH cells, indicating that both BCMA and CD19 are specifically and equally lysing B cells and plasma cells in vivo, making BCMA-CD19 cCAR a candidate for clinical use.

Acknowledgments: patients and their families

Disclosure of Interests: Fang liu: None declared, Hongyu Zhang: None declared, Xiao Wang: None declared, Jia Feng: None declared, Yuanzhen cao Employee of: Employee of iCell Gene Therapeutics LLC, Yi Su: None declared, Masayuki Wada Employee of: employee of iCell Gene Therapeutics LLC, Yu Ma Employee of: employee of iCAR Bio Therapeutics Ltd, Yupo Ma Shareholder of: shareholder of iCell Gene Therapeutics LLC

Conclusion: Our first in human clinical trial on BCMA-CD19 cCAR demonstrated profound efficacy in reducing DSA levels in an HSCT candidate and ANA titer in a SLE patient. There was strong clinical evidence of depletion of antibody-producing roots, B-cells and plasma cells in both patients. Our results further suggested that BCMA-CD19 cCAR has the potential to benefit patients receiving solid organ transplants or those with other antibody-mediated diseases.
Background: The oncogenic protein survivin is a marker of severe rheumatoid arthritis (RA). High serum levels of Survivin predict progressive joint damage and poor treatment response.

Objectives: To study the role of survivin in the transcriptional regulation of phenotype in CD4+ T cells.

Methods: CD4+ T cells of RA female patients were isolated from the peripheral blood. Activated CD4+ cells were treated with survivin inhibitor YM155. Transcriptional analysis was done by RNAseq (Illumina) and conventional qPCR. Chromatin of CD4+ cells was immunoprecipitated using polyclonal antibodies to survivin and subjected to deep sequencing (survivin ChIPseq, Hiseq2000, Illumina) and aligned to GRCh38. Statistical analysis of differentially expressed genes (DEG) was done in R-studio using Benjamin-Hochberg adjustment for multiple testing (Biocoductor, DESeq2 package).

Results: Survivin ChIPseq of the activated CD4+ T cells was enriched with the genes engaged in regulatory transcription factor specific DNA binding (GO:0000987, adj p=0.0005) and RNA polymerase II regulatory transcription (GO:0000978, adj p = 0.0004). Among survivin targets were the genes of HOX-B cluster and TALE family proteins MEIS, PKNOX and PBX1 controlling early leukopoiesis and T cell maturation. Inhibition of survivin in PBMC resulted in significant upregulation of PBX1 (p=0.023), MEIS3 (p=0.0036), similar tendency was observed for HOX6 and HOX4 genes. RNAseq analysis of CD4+ cells of RA patients with different transcription of PBX1, identified 1636 genes (adj p<0.05). IRF5, coding for survivin, was 8.3 folds higher in CD4+ cells with low PBX1 (p=0.0005). Among the core transcription factors of T helper cell differentiation, we identified NF-kB1 and NF-kB2, TBX21, IRF4, IRF8 and STAT3, BATF and BATF3. This followed by significantly higher TNF, IFNγ and IL17A and IL17F in PBX1 low CD4+ T cells. The pathway enrichment analysis of DEG identified strong over-representation of cytokine-specific genes (GO:0050252, GO:0005126, GO:0048018, GO:0030545, FDR q-values 10^-12 -10^-9). The genes of IL4, IL5, IL13, IL9, IL3 and CSF2 located within the chromosome 5 were common for all GO-lists, and were higher in PBX1 low, but none of those genes was identified by survivin-ChIPseq or PBX1-ChIPseq. Analysis of ChIPseq data identified the genes of STAT3, IRF4, IRF8 and BATF as common targets for PBX1 and survivin.

Conclusion: This genome-wide analysis indicates that survivin regulates transcription of the TALE family protein PBX1 in CD4+ T cells, which has essential effect for differentiation and phenotype of Th subsets. Low PBX1 in RA patients is associated with terminally differentiated effector CD4+ T cells.

References:

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.5873

THU0038 DECIPHERING DISEASE-RELEVANT T CELL SUBSETS IN RHEUMATOID ARTHRITIS IDENTIFIES A NOVEL CELLULAR SUBSET OF PATHOGENETIC IMPORTANCE IN THERAPEUTIC RESISTANCE.

M. Nyrienda1, I. Mcinnes1, C. Goodyear1. 1Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom.

Background: Ablation of T cell responses are key in driving autoimmunity and are commonly associated with rheumatoid arthritis (RA). Unravelling pathways of importance in therapeutic partial response and failure is of critical importance, as this will potentially provide new insights into key drivers of immune-mediated pathogenesis.

Objectives: To delineate disease-relevant T cell subsets in RA and assess their potential to act as cellular markers amenable to precision medicine approaches, particularly in the context of therapeutic partial or non-response.

Methods: FACS-based immunophenotyping and ex vivo functional response profiles of CD4+CD161+CCR2+CCR5+ T cells were performed in peripheral blood mononuclear cells (PBMC) obtained from patients with RA and healthy controls, using previously characterised methodologies. RA patients fulfilled the 2010 ACR/EULAR criteria for RA. All samples were obtained after written consent, with the appropriate ethical approvals in place.

Results: RA patients harboured a higher frequency of CCR2+CCR5+ cells within the CD4+CD161+ T cell compartment compared with healthy controls. In RA patients this T cell subset had a higher proportion of cells that secrete pro-inflammatory cytokines such as IL-17A, GM-CSF, IFNγ, and TNF. Importantly, the CD4+CD161+CCR2+CCR5+ T cell subset was significantly increased in DMARD non-responders compared to both responders and healthy controls. Moreover, in DMARD non-responders, these cells had a propensity to express increased proportions of pro-inflammatory cytokines. Notably, there was also a significant increase in the ratio of effector:regulatory T cell (Teff: Treg) compared to healthy controls.

Conclusion: The current study demonstrates that overexpression of TNFα leads to an aberrant spleen architecture, characterized by smaller follicles and a decrease in central T cell areas, which is critically dependent on TNFRI. In addition, overexpression of tmTNF results in enlarged PLN and increased total B cell volume, which is dependent on TNFRI, whereas TNFRI is more important in the proper organization of B cell follicles. Overall, this study employing different state-of-the-art (3D) imaging techniques highlights the importance of TNFα-TNFRI-induced signaling events in secondary lymphoid organ morphology and function, and reveals distinct roles for TNFRI and II. Advancing our knowledge in this field might provide a better understanding of the pathophysiology of TN-associated diseases such as arthritis, which may be important to develop new or improved therapeutic strategies.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.5426

Downloaded from http://ard.bmj.com/ on September 17, 2023 by guest. Protected by copyright.