intron regions of PIK3AP1 (BCAP) and SPO2N (SPONDIN-2) genes are differentially methylated in patients with periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA) syndrome

Results: The analysis showed that PIK3AP1 and SPO2N intronic regions are differentially methylated in patients with PFAPA. MeDIP and MBD were performed using pooled DNA libraries enriched for methylated genomic regions. Of identified candidate genes, two with most significantly different methylation levels were further evaluated with methylation specific restriction enzymes coupled with qPCR (MSR-qPCR).

Conclusion: Our findings indicate that B cell adapter protein (BCAP) as PIK3K binding inhibitor of inflammation and spondin-2 (SPON2) as a pattern recognition molecule and integrin ligand could play a role in etiology of PFAPA. Their role and impact of changed DNA methylation in PFAPA etiology and autoinflammation need further investigation.

References:

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.5573

THU0019 INTRON REGIONS OF PIK3AP1 (BCAP) AND SPO2N (SPONDIN-2) GENES ARE DIFFERENTIALLY METHYLATED IN PATIENTS WITH PERIODIC FEVER, APHTHOUS STOMATITIS, PHARYNGITIS AND ADENITS (PFAPA) SYNDROME

THU0020 NO CAUSAL ASSOCIATION OF SERUM URATE OR GOUT WITH ALZHEIMER’S DISEASE: A MENDELIAN RANDOMIZATION ANALYSIS

Disclosure of Interests: Lu Liu: None declared, Ariella Amar: None declared, James Robinson: None declared, Ian N. Bruce Grant/research support from: Genzyme Sanofi, GSK, and UCB, Consultant of: Eli Lilly, AstraZeneca, UCB, Illoito, and Merck Serono, Speakers bureau: UCB, David Morris: None declared, Ty Vuye: None declared

DOI: 10.1136/annrheumdis-2020-eular.5973

<table>
<thead>
<tr>
<th>Number of SNPs</th>
<th>OR</th>
<th>95% CI</th>
<th>p-value</th>
<th>MR-Egger intercept (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum urate exposure (per 1 mg/dl increase)</td>
<td>1.04</td>
<td>0.98-1.11</td>
<td>0.187</td>
<td>0.96-1.27</td>
</tr>
<tr>
<td>MR-Egger</td>
<td>158</td>
<td>1.06</td>
<td>0.96-1.17</td>
<td>0.228</td>
</tr>
<tr>
<td>Gout exposure (gout vs. non-gout)</td>
<td>1.03</td>
<td>0.98-1.07</td>
<td>0.290</td>
<td>0.35-1.45</td>
</tr>
<tr>
<td>MR-Egger</td>
<td>158</td>
<td>1.03</td>
<td>0.98-1.07</td>
<td>0.290</td>
</tr>
</tbody>
</table>

THU0020 NO CAUSAL ASSOCIATION OF SERUM URATE OR GOUT WITH ALZHEIMER’S DISEASE: A MENDELIAN RANDOMIZATION ANALYSIS

Disclosure of Interests: S. Marozoff¹, N. McCormick¹, J. Choi², H. Choi¹,² *Arthritis Research Canada, Richmond, Canada; ³Massachusetts General Hospital, Boston, United States of America*

Background: Several epidemiologic studies have found a lower risk of Alzheimer’s disease (AD) among individuals with a history of gout¹ or high serum urate levels², which are the precursor to gout. Serum urate may have neuroprotective benefits for AD, however it is possible that reverse causation and residual confounding could explain the observational evidence.

Objectives: To study the causal associations of serum urate and gout with Alzheimer’s disease using Mendelian Randomization (MR) methods.

Methods: Two-sample MR was performed to examine the causality of: 1) serum urate on Alzheimer’s disease and 2) gout on Alzheimer’s disease. Single nucleotide polymorphisms (SNP) identified from a genome-wide association study of 457,690 adults described 183 SNPs associated with serum urate and gout, which were used as instrumental variables³. Additional single-SNP analyses were conducted using SNPs from three genes identified as major determinants of urate levels (SLC2A9, SLC22A12, and ABCG2). SNPs for AD came from the International Genomics of Alzheimer’s Project, comprised of 35,274 AD cases and 59,163 cognitively normal elderly controls⁴. Inverse-variance weighted (IVW) models were the primary method used to examine the associations between each exposure and risk of AD. Additional analyses examined the potential impact of pleiotropy via MR-Egger models. Single-SNP analyses used the Wald ratio. All analyses were performed using R.

Results: There was no evidence of a causal association between genetically-determined serum urate or gout and risk of AD from IVW analyses (both p>0.1) (Table 1). MR-Egger analyses yielded similar estimates (both p>0.1) and the intercepts of the MR-Egger regressions did not suggest the presence of directional pleiotropy (p=0.64 for serum urate exposure and p=0.98 for gout exposure) (Table 1). Additionally, none of the three individual SNPs were significantly associated with risk of AD (all p>0.05) (Table 2).

Conclusion: Using both serum urate and gout as instrumental variables in MR analysis, these findings suggest that serum urate and gout are not causal determinants for the development of AD. The inverse associations described in observational studies may in part be due to confounding or reverse causality.

References:

THU0020 NO CAUSAL ASSOCIATION OF SERUM URATE OR GOUT WITH ALZHEIMER’S DISEASE: A MENDELIAN RANDOMIZATION ANALYSIS

Disclosure of Interests: Shelby Marozoff: None declared, Natalie McCormick: None declared, Jeewoong Choi: None declared, Hyon Choi Grant/research support from: Ironwood, Horizon, Consultant of: Takeda, Selecta, Horizon, Kowa, Vaxart, Ironwood

DOI: 10.1136/annrheumdis-2020-eular.5512

THU0020 NO CAUSAL ASSOCIATION OF SERUM URATE OR GOUT WITH ALZHEIMER’S DISEASE: A MENDELIAN RANDOMIZATION ANALYSIS

Disclosure of Interests: Shelby Marozoff: None declared, Natalie McCormick: None declared, Jeewoong Choi: None declared, Hyon Choi Grant/research support from: Ironwood, Horizon, Consultant of: Takeda, Selecta, Horizon, Kowa, Vaxart, Ironwood

DOI: 10.1136/annrheumdis-2020-eular.4999

THU0021 IDENTIFICATION OF MUSCLE ASSOCIATED KEY GENES TO SUPPORT AXIAL SPONDYLOARTHRITIS DIAGNOSIS BY TRANSCRIPTOMIC APPROACH, THE MYOSPA STUDY

Disclosure of Interests: A. Masahayeki Sardo¹, D. Sobral², L. Domingues², S. Rodrigues-Manica³, R. Pinheiro Torres¹, A. Neto³, P. Alves, J. Costa³, A. R. Grosso³, J. Branco³, F. Pimentel Dos Santos¹,² on behalf of MyoSpA Working Group.¹ NOVA Medical School, Universidade NOVA de Lisboa, CEDOC, Lisbon, Portugal; ²UCIBIO, DCV, FCT-NOVA, Caparica, Portugal; ³Hospital Egas Moniz, Lisboa, Portugal, ⁴IBET - Institute of Experimental Biology and Technology, Oeiras, Portugal

DOI: 10.1136/annrheumdis-2020-eular.5331

Thursday, 04 June 2020

223
Background: Early diagnosis of axial Spondyloarthritis (axSpA) represents a major clinical challenge nowadays. Increasing evidence has determined that early diagnosis, prompt treatment initiation and early achievement of remission are the best predictors of long-term clinical, functional and radiographic outcomes. New tools to support the diagnosis are needed.

Objectives: This study aims to identify differentially expressed genes that may improve the current clinical diagnosis approach for early axSpA.

Methods: A cross-sectional study was conducted on 50 participants, 25 patients with axSpA (according to ASAS criteria) and 25 Healthy Controls, matched by gender, age and levels of physical activity. Peripheral blood samples were collected and RNA-Seq technology was performed. Normalization of raw data, and identification of differentially expressed genes was obtained using edgeR and limma to obtain DMRs in axSpA. Gene Set Enrichment Analysis (GSEA) and Functional Enrichment analysis using Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were also performed. A number of Differently Expressed Genes were highlighted.

Results: 311 genes were identified as being significantly differentially expressed between patients and controls. In details, 129 downregulated (7 genes have fold change more than 1) and 182 upregulated genes (3 genes have fold change more than 1) are highlighted. These genes are mostly involved in Myogenic, Innate Immune Signalling and JAK/STAT pathways. Several genes with functions of skeletal muscle development and muscle contraction were identified.

Conclusion: The evidence disclosed that regulation of muscle development and contraction may be also engaged in pathophysiology mechanisms of axSpA. These new cues open new perspectives for diagnostic and therapeutic approaches in axSpA.

Acknowledgments: To all patients and healthy people who participate in MySpA study

THU0022

DIFFERENTIAL DNA METHYLATION AS A PREDICTOR OF TOCILIZUMAB RESPONSE IN RHEUMATOID ARTHRITIS PATIENTS

N. Nair1, D. Plant1,2, J. Isaacs1, A. Morgan4, K. Hyrich1, A. Barton1,2, A. G. Wilson5 on behalf of MATURA. 1The University of Manchester, Versus Arthritis Centre for Genetics and Genomics and Centre for Epidemiology, Manchester, United Kingdom; 2NHIR Manchester Biomedical Research Unit, Manchester, United Kingdom; 3Newcastle University; NHIR Newcastle BRC, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom; 4Leeds School of Medicine, University of Leeds and NIHR Leeds BRC, Leeds, United Kingdom; 5University College Dublin, School of Medicine and Medical Science, Dublin, Ireland

Background: Tocilizumab (TCZ) is a biological disease-modifying antirheumatic drug that blocks IL-6 signalling and is effective in ameliorating disease activity in rheumatoid arthritis (RA). However, approximately 50% of patients do not respond adequately to TCZ and some patients report adverse events. Considering there is growing evidence that DNA methylation is implicated in RA susceptibility and response to some biologics (1, 2), we investigated DNA methylation as a predictor of response status.

Objectives: To identify differential DNA methylation signatures in whole blood associated with TCZ response in patients with RA.

Methods: Epigenome-wide DNA methylation patterns were measured using the Infinium EPIC BeadChip (Illumina) in whole blood-derived DNA samples from patients with RA. DNA was extracted from blood samples taken pre-treatment and following 3 months on therapy, and response was determined at 6 months using the Clinical Disease Activity Index (CDAI). Patients who had good response (n=10) or poor response (n=10) to TCZ by 6 months were selected. Samples from secondary poor responders (n=10) (patients who had an improvement of CDAI and were in remission at 3 months, followed by a worsening of CDAI at 6 months) were also analysed. Differentially methylated positions and regions (DMPs/DMRs) were identified using linear regression, adjusting for gender, age, cell composition, smoking status, and glucocorticoid use. Gene Set Enrichment Analysis (GSEA) was used to identify significant pathways associated with response and Functional Epigenetic Module analysis of interactive hotspots in regions of differential methylation.

Results: 20 DMPs were significantly associated with response status at 6 months in the pre-treatment samples. Other 21 DMPs were associated with response in the 3 month samples. Within good responders, 10 DMPs showed significant change in methylation level between pre-treatment and the 3 month samples (unadjusted P-value<0.05). One DMP, cg03121467, was significantly less methylated in good responders compared to poor responders in the pre-treatment samples. This DMP is close to EPB41L4A and thought to have a role in β-catenin signalling. GSEA of DMRs in non- and secondary non- responders identified histone acetyltransferase pathways and included the KAT7A gene, which is a repressor of NF-κB. Additional analysis of interaction hotspots of differential methylation identified significant interactions with STABBP and PTPN12 associated with response status.

Conclusion: These preliminary results provide evidence that DNA methylation patterns may predict response to TCZ. Validation of these findings in other larger data sets is required.

References:

Disclosure of Interests: Nisha Nair: None declared, Darren Plant: None declared, John Isaacs Consultant of: AbbVie, Bristol-Myers Squibb, Eli Lilly, Gilead, Janssen, Merck, Pfizer, Roche, Ann Morgan Grant/research support from: I have received a grant from Roche Products Ltd to establish a registry for GCA patients treated with tocilizumab., Consultant of: I have undertaken consultancy work for Roche, Chugai, Regeneron, Sanofi and GSK in the area of GCA therapeutics., Speakers bureau: I have presented on tocilizumab therapy for GCA and glucocorticoid toxicity on behalf of Roche products ltd., Kimme Hyrich Grant/research support from: Pfizer, UCB, BMS, Speakers bureau: Abbvie, Anne Barton Consultant of: AbbVie, Anthony G Wilson: None declared

DOI: 10.1136/annrheumdis-2020-eular.4394

THU0023

DETAILED PROFILE OF CO-OCCURRENCE OF RELAPSING POLYCHONDROSIS AND AUTOIMMUNE THYROID DISEASE

T. Nakaijima1, H. Yoshiji2, Y. Yamano2, H. Handa4, K. Ohmura2, T. Mimori2, C. Terao4, 1Tazuke Kofukai Medical Research Institute, Kitano Hospital, Department of Clinical Immunology and Rheumatology, Osaka, Japan; 2Kyoto University Graduate School of Medicine, Department of Rheumatology and Clinical Immunology, Kyoto, Japan; 3St. Marianna University School of Medicine, Department of Rare Diseases Research Institute, Institute of Medical Science, Kawasaki, Japan; 4St. Marianna University School of Medicine, Division of Respiratory and Infectious Diseases, Department of Internal Medicine, Kawasaki, Japan; 5RIKEN Center for Integrative Medical Sciences, Laboratory for Statistical and Translational Genetics, Yokohama, Japan; 6Shizuoka General Hospital, Clinical Research Center, Shizuoka, Japan; 7The School of Pharmaceutical Sciences, University of Shizuoka, The Department of Applied Genetics, Shizuoka, Japan

Background: Relapsing polychondritis (RP) is a rare inflammatory disease, which is characterized by recurrent inflammation and destruction of cartilage tissues. RP also has the profile of autoimmune disease and is often complicated with other autoimmune disease. Autoimmune thyroid disease (AITD) is one of common autoimmune diseases, which consists of Graves’ disease (GD) and Hashimoto’s thyroiditis (HT). While RP is reported to be complicated with AITD1, there has been no study on detailed profile of co-occurrence of RP and AITD.

Objectives: We aimed to reveal whether there is common (statistically significant) profile of RP and AITD. We also analyzed clinical and genetic profiles characterizing the co-occurrence.

Methods: We recruited 117 patients with RP and checked their medical records in order to obtain the information about complication of AITD and clinical features. In addition, we genotyped Human Leucocyte Antigen (HLA) A, B, Cw, DRB1, DQB1 and DPB1 alleles for 88 of the 117 patients. Co-occurrence ratio was determined in order to obtain the information about compilation of AITD and clinical features. In addition, we genotyped Human Leucocyte Antigen (HLA) A, B, Cw, DRB1, DQB1 and DPB1 alleles for 88 of the 117 patients. Co-occurrence ratio was determined.

Results: The preliminary results are presented in Table 1. The RP patients with AITD were significantly more frequent than the general population (P = 0.011). The prevalence of AITD was significantly higher in RP patients with GD than in those with HT 11/117 (9.4%) vs 15/117 (12.8%) (P = 0.041). The analysis of clinical features showed that the prevalence of symptoms related to each organ system, such as joint, skin, eye, and ENT, was significantly higher in RP patients with AITD than in those without AITD. The analysis of genetic features showed that the prevalence of HLA-DQB1 alleles was significantly higher in RP patients with AITD than in those without AITD. The prevalence of DRB1 alleles was also significantly higher in RP patients with AITD than in those without AITD.

Conclusion: The preliminary results indicate that there is a significant co-occurrence of RP and AITD. Further studies are needed to confirm these preliminary results.

References: