EPIDEMIOLOGIC ANALYSIS OF RA PATIENTS SHOWS DISTINCT BIOLOGICAL PROCESSES ASSOCIATED WITH ANTI-TNF RESPONSE

A. Juliá1, A. Gómez2, A. Fernández Nebro3, F. J. Blanco4, A. Enra4, S. Sánchez Fernández5, J. Montor6, M. Aleri-López7, I. González-Alvaro8, R. García de Vicuna9, R. Sammarti9, C. Díaz Torne9, C. Marris Fernandez Cid10, J. Tornero Molina12, N. Palau13, R. M. Lastra1, J. Lladós1, S. Marsal1, 1Rheumatology Research Group, Vall d’Hebron Research Institute, Barcelona, Spain; 2Rheumatology Department, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain; 3Rheumatology Department, INIBIC-Hospital Universitario A Coruña, A Coruña, Spain; 4Rheumatology Department, Hospital San Rafael, Barcelona, Spain; 5Rheumatology Department, Hospital General La Mancha Centro, Ciudad Real, Spain; 6Rheumatology Department, Hospital del Mar, Barcelona, Spain; 7Rheumatology Department, Hospital Universitario Central de Asturias, Asturias, Spain; 8Rheumatology Department, Hospital Universitario La Princesa, Madrid, Spain; 9Rheumatology Department, Fundació Clinic per a la Recerca Biomèdica, Barcelona, Spain; 10Rheumatology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; 11Hospital Universitario Virgen de la Arrixaca, Murcia, Spain; 12Servicio de Reumatología, Hospital Universitario Guadalajara, Guadalajara, Spain

Background: Blocking Tumor Necrosis Factor (TNF) activity is a successful therapeutic approach for approximately 60% of patients with rheumatoid arthritis (RA). To date, however, the biological basis of the lack of efficacy of anti-TNF agents is unknown.

Objectives: The objective of present study was to characterize the biological basis of anti-TNF lack of efficacy in RA using an epigenomic data approach in two steps: first, to assess the differential methylation changes between respond- ers and non-responders; and second, to use this differential methylation profile in a systems biology approach to infer differential methylated biological modules according to anti-TNF response.

Methods: A total of n=68 patients diagnosed with RA according to the ACR-EULAR criteria belonging to 16 Hospitals across Spain were recruited. All patients were >18 years old, with more than 6 months of disease evolution and a baseline disease activity of DAS28 > 3.2. Treatment response was defined according to the EULAR criteria at week 12. Good and moderate responders were aggregated into a single responder group. Genomic DNA was collected at baseline and the methylation profile was assessed using the Illumina Infinium EPIC array, which interrogates 850,000 methylation CpG sites across the genome. Differential Methylation analysis, biological pathway analysis, and the systems Biology approach using Protein-Protein Interaction Networks, were conducted using the R statistical language and the Bio-conductor libraries.

Results: From 68 anti-TNF treated patients, n=27 (39.7%) were good responders, n=26 (38.2%) moderate responders and n=15 (22.05%) non-responders at week 12 of treatment. Differential methylation analysis identified two distinctive biological profiles associated with the clinical response: responders were associated to interleukin and cytokine production, and non-responders were associated with biological pathways associated to TGF-βeta production and T cell regulation. Using these differentially methylated profiles, epigenetic modules with differential methylations were identified in responders and non-responders were also found. Two epigenetic modules with significant enrichment in inflammatory and interleukin production and immune regulatory processes were validated in an independent patient cohort.

Conclusion: The epigenetic analysis of whole blood from RA patients using a module-based approach shows reproducible biological mechanisms associated with the response to anti-TNF therapy.

Acknowledgements: We would like to thank the clinical researchers and patients participating in the IMID Consortium for their collaboration.

DISCLOSURE OF INTERESTS: Leticia García-Montoya: None declared, Zoe Wigston: None declared, Agnieszka Buknka: None declared, Eleonora Mareda: None declared, Edward Vital Grant/research support from: AstraZeneca, Roche/Genentech, and Sanzdo, Consultant of: AstraZeneca, GSK, Roche/Genentech, and Sanzdo, Speakers bureau: Becton Dickinson and GSK, Paul Emery Grant/research support from: AbbVie, Bristol-Myers Squibb, Merck Sharp & Dohme, Pfizer, Roche (all paid to employer), Consultant of: AbbVie (consultant, clinical trials, advisor), Bristol-Myers Squibb (consultant, clinical trials, advisor), Lilly (clinical trials, advisor), Merck Sharp & Dohme (consultant, clinical trials, advisor), Novartis (consultant, clinical trials, advisor), Pfizer (consultant, clinical trials, advisor), Roche (consultant, clinical trials, advisor), Samsung (clinical trials, advisor), Sandzdo (clinical trials, advisor), UCB (consultant, clinical trials, advisor)

DOI: 10.1136/annrheumdis-2020-eular.4981

ATTEMPTS TO LINK EXONIC GENIC POLYMORPHISMS TO SYSTEMIC LUPUS ERYTHEMATOSUS (SLE)-ASSOCIATED PROTEIN MODIFIED FUNCTIONALITY: A STRUCTURAL BIOLOGY APPROACH

E. Eliopoulos1, G. Goulilometos2, M. Matalliotakis3, D. Vlachakis4, T. Niewold4, M. Zervou5, 1Agricultural University of Athens, Department of Biotechnology, Athens, Greece; 2University of Crete, School of Medicine, Heraklion, Greece; 3Athens University of Economics and Business, School of Life Sciences, Athens, Greece; 4NYU School of Medicine, Colton Center for Autoimmunity, New York, United States of America

Background: Gene association studies and genome wide association studies (GWAS) have played a primary role in depicting genetic contributions to systemic lupus erythematosus (SLE) development, while accommodating the exonic polymorphisms on the protein structure level, when available, enhances our understanding of protein function modification or depletion. Linking human genetics with therapeutic targets requires the biological function of the causal gene variant to be known.

Objectives: To investigate recently identified SLE-associated functional gene polymorphisms, such as PARP1, ITGAM, TNAIP3, NCF1, PON1, IFIH1, SH2B3 and TYK2 [1-4] by correlation to protein structure and function.

Methods: Three-dimensional (3D) homology modeling and molecular mechanics/dynamics studies were applied for the localization of the polymorphisms under study on the respective proteins. The mutants were constructed using molecular modeling with the program Maestro (Schrodinger, LLC), which was also used to analyze the conformational changes caused by the mutation. All figures depicting 3D models were created using the molecular graphics program PyMOL V.2.2 [5].

Results: Modeling revealed that rs1136410 SNP encodes the less common polymorphism Val762Ala on PARP1 that reduces enzymatic activity of Poly(ADP-ribose) polymerase 1 (Figure 1). The putative polymorphism on integrin alpha M, component of the macrophage-1 antigen complex affects protein surface recognition, TNAIP3 rs2230926 polymorphism encodes Cys instead of Phe at residue 127 of the ubiquitin editing A20 protein, while rs201802880 polymorphism of the neutrophil cytosolic factor 1 (NCF1) gene modifies the function of the cytosolic subunit of neutrophil NADPH oxidase with the mutation Arg400His. The PON1 is involved in the oxidative stress process that cause tissue damage observed in SLE and anti-phospholipid syndrome (APS). The PON1 Gln192Arg mutation (rs662 SNP) affects shape and recognition of the ligand recognition site as part of the evolutionary process, while Gln192Arg mutation (rs662 SNP) affects shape and recognition of the ligand recognition site as part of the evolutionary process, while Gln192Arg mutation (rs662 SNP) affects shape and recognition of the ligand recognition site as part of the evolutionary process, while
