Results: Genomic DNA methylation analysis identified 813 DMPs, including 279 hypomethylated and 534 hypermethylated. Functional classification of these methylated genes revealed associations with biological processes and pathways related to clinical phenotype, including immune response, adhesion, oxidative stress and vascular signaling. Correlation and association studies showed that the methylation levels of genes related to antigen-presenting cells were associated with the CV-risk score, aGAPPS (CCFR2, TXLN8, GLIPFR), type of thrombosis (SIGLEC11, COLEC16, LRRCA16A, AHSA1, TRIL) and aPL titers (CLEC4G, RGS4, HLA-DPA1, B2F6, RAET1E, HLA-G, HLA-DPA1, HLA-H, TXLN8). Besides, methylation levels of DMPs related to vascular signaling and adhesion processes were associated with the presence of thrombotic recurrences (VEGFA, MAPK14, ITGA8, EPCAM, PCDH26, DLG1) as well as with prevalent CV-risk factors such as hypertension and dyslipidemia (ITGA11, DSCAM, CLEC4F, CD44, LTBP2, PCDHB14). In addition, methylation levels of DMPs related to oxidative stress (GP2, PGD, ADH1) were associated with microvascular endothelial dysfunction. An altered mRNA expression of some of these genes with aberrant methylation and related to increased CV-risk and thrombotic recurrences in APS was also identified. Both, abnormal methylation and transcription levels of several genes were further associated with a pathological increase of the CIMT. Finally, in vitro studies supported the role of aPLs as key players in the altered methylation and transcriptomic profiles of APS patients.

Conclusion: APS patients showed an impaired methylation profile in monocytes of genes associated with clinical features of the disease, including aPL titers, CV risk, thrombotic recurrences, endothelial dysfunction and early atherosclerosis. These results offer a map to the monocytes methylome and shed light on the pathophysiology of APS, paving the way for the development of new, more effective biomarkers and therapeutics.

Acknowledgments: Funded by ISCCII (P119/0837 and RIER RD16/0012/2015) co-funded with FEDER.

Disclosure of Interests: Carlos Perez-Sanchez: None declared, Alejandra M. Patiño-Trives: None declared, Maria A Aguirre: None declared, Pérez Sánchez Laura: None declared, María Luque-Telav: None declared, Iván Arias de la Rosa: None declared, Carmen Torres-Granados: None declared, María del Carmen Abalos-Aguilera: None declared, Pedro Segui Azpilicueta: None declared, Javier Rodriguez: None declared, Esteban Ballester: None declared, Nuria Barbarroja Puerto Grant/research support from: ROCHE and Pfizer., Speakers bureau: ROCHE and Celgene., Eduardo Collantes Estevan Grant/research support from: ROCHE and Pfizer., Speakers bureau: ROCHE, Lilly, Bristol and Celgene, Chary Lopez-Lopez-Ferrada Grant/research support from: ROCHE and Pfizer.

DOI: 10.1136/annrheumdis-2020-eular.5356

Figure 1. Plots are shown for CpGs in CD4+ T cells that were found to be either (A) hyper-variable or (B) hyper-variable in rheumatoid arthritis patients, with equivalent B cell plots again depicting (C) rheumatoid arthritis hypo-variable and (D) hyper-variable positions. ΔT_q = Bartlett’s τ-value, a false discovery rate adjusted measure of group differences in DNA methylation variance. $T_q = T$-test p-value, applied to test for differences between the group means of any positions found to exhibit differential variance between cases and controls in the Bartlett’s test ($q < 0.001$).

Conclusion: We highlight a role for altered variability in DNA methylation during the molecular pathogenesis of RA, and emphasise the importance of its study in relevant cell subsets.

References: