Autoimmune diseases by abnormal T cell function

OP0327

A UNIQUE PD1+CD38+ CD69 T CELL POPULATION CHARACTERIZES CHECKPOINT INHIBITOR-ASSOCIATED INFLAMMATORY ARTHRITIS

R. Wang1, K. K. Chan1, A. Cunningham-Bussel1, L. Donlin1, G. Vitone2, A. Tirpack2, C. Benson3, G. Keras1, A. H. Jonsson1, M. Brenner1, A. Bass2, D. Rao3,1, Brigham and Women's Hospital, Rheumatology, Boston, United States of America; 2Hospital for Special Surgery, Rheumatology, New York, United States of America; 3Hospital for Special Surgery, Research, New York, United States of America

Background: Immune checkpoint inhibitors (CI) are monoclonal antibodies that block CTLA-4, PD-1 or PD-L1, resulting in cytotoxic T cell activation in the tumor microenvironment. They have revolutionized the management of metastatic cancer but unleash “immune-related adverse events” in >80% of treated patients, including inflammatory arthritis in ~4%. CI-associated arthritis (CI-A) often presents as a symmetrical polyarthritis, phenotypically indistinguishable from rheumatoid arthritis (RA), but whether it shares cellular and molecular features of RA has not been determined.

Objectives: To compare synovial fluid (SF) T cell populations from CI-A patients to those in patients with RA, phenotypically and functionally.

Methods: We immunophenotyped SF mononuclear cells from patients with CI-A caused by anti-PD-(L)1 therapy (n=9), seropositive RA (n=5), and psoriatic arthritis (PsA) (n=5) using a 39-marker mass cytometry (CyTOF) panel. FlowSOM was used to cluster CD4 and CD8 T cells into 15 ‘metacusters’ based on multidimensional phenotypes. We used Kruskal-Wallis or Mann-Whitney tests to identify significantly altered populations (p<0.05), which we confirmed by biaxial gating. Flow cytometry was used to confirm SF findings in an independent cohort, and to identify cells of interest in peripheral blood. Cytokine staining was performed on sorted T cells populations after CD3/CD28 stimulation for 72 hours, followed by 4 hour PMA/ION+/-BRA/MON restimulation.

Results: In CI-A patients, T cells represented 50% of SF mononuclear cells (33% CD4, 40% CD8), followed by monocytes (24%) and NK cells (8%), comparable to RA and PsA. However, FlowSOM analysis revealed expansion of a distinct population of PD1+CD38+CD69+ T cell populations in CI-A, a 3.4-fold increase over RA/PsA, p=0.0002 (Fig. 1). Over 40% of these cells expressed Ki67 in CI-A, suggesting active proliferation. Flow cytometry on SF cells from an independent cohort of CI-A patients (n=5) and RA/PsA comparators (n=9) confirmed our findings. PD1+CD38+CD69+ CD8 T cells were also expanded in the blood of CI-A patients, where they represented 4.6% of CD8 T cells, a 2.8-fold increase over RA, p=0.0057. In addition to expressing high levels of PD1, CD38+CD69+ CI-A T cells express other immune checkpoint receptors including TIGIT and PD-1. After in vitro stimulation, CD38+CD69+ CD8 T cells produced granulocyte colony stimulating factor, which activated NK cells, NKT cells and IFN-γ released by T cells.

Conclusion: Osteosan is a program developed on the base of AI technologies, analyzes radiographic images of the knee joints for determining OA stage. It provides high accuracy in OA stage determination by assessing knee radiographs, in 95% of cases, the accuracy of the system varies from 91.8% to 99%.

References:

Disclosure of Interests: Olga Georginova Speakers bureau: GlaxoSmithKline Consumer Healthcare, Margarita Kobzar Employee of: GSK Consumer Healthcare

DOI: 10.1136/annrheumdis-2020-eular.4424

Figure 1. Mass cytometry CD8+ T cells (tSNE plots) with FlowSOM metaclusters.

FlowSOM analysis of SF CD4 T cells in CI-A patients revealed the expansion of a subpopulation of CD4 cells with a similar surface phenotype of PD1+ CD38hi CD69hi CD127+ (metacuster2, 10% of CD4s in CI-A, a 2.4-fold increase over RA/PsA, p=0.0047). In contrast, RA patients had a significantly expanded population of PD1+ CD38hi CD69hi CD127+ these CD8 T cells express other immune checkpoint receptors including TIGIT and PD-L1. After in vitro stimulation, CD38hi CD69hi CD8 T cells produced granzyme B along with TNF and IFN-γ at comparable levels to other CD8 populations, suggesting that they are not functionality exhausted.