REFERENCES:

Disclosure of Interests:
None declared

DOI:
10.1136/annrheumdis-2020-eular.5968

COMORBIDITIES IMPACT ON PHYSICAL REHABILITATION PROGRAM OUTCOMES IN PATIENTS WITH KNEE OSTEARTHRITIS

V. Salaru1, A. Vizardoa2, L. Mazur-Nicol2, M. Cebanu3, T. Rotaru4, S. Vetrila5, M. Garabaju4, L. Noghin-Oprea5, V. Sadoloci-Bodecia5, M. Mazur5,1 State University of Medicine and Pharmacy “Nicolae Testemitanu”; Family Medicine, Chisinau, Moldova, Republic of; 1University Medical Rehabilitation Center, Medical Rehabilitation, Physical and Manual Therapy, Chisinau, Moldova, Republic of; 2Children’s Medical Rehabilitation, Physical and Pharmacy “Nicolae Testemitanu”; Internal Medicine, Chisinau, Moldova, Republic of; 3State University of Medicine and Pharmacy “Nicolae Testemitanu”; Emergency Medicine, Chisinau, Moldova, Republic of; 4Institute of Cardiology, Chisinau, Moldova, Republic of

Background: Physical rehabilitation is proposed as a method of non-pharmacological treatment of knee osteoarthritis (OA) by the EULAR and OARSI recommendations. At the same time, presence of concomitant diseases could influence the condition of patients and the outcomes of the rehabilitation program.

Objectives: To evaluate the frequency of comorbidities in OA patients and to appreciate their impact on outcomes of the physical rehabilitation program.

Methods: A prospective control case study was conducted in the University Rehabilitation Center. The patients underwent clinical examination, VAS scale was used to assess level of pain, and Knee Injury and Osteoarthritis Outcome Score (KOOS) with 5 domains (Pain, Symptoms, ADL, Sport, QoL) for joint function assessment. These parameters were evaluated at the onset of the program (T0) and at the end of the 10th day (T1). Medical data records, general clinical examination, VAS scale and KOOS were used for data collection.

Results: 48 patients with OA were included in the study. 37 patients of them were found with comorbidities. The most frequent associated diseases were: cardiovascular- 76.6%, obesity-59.9%, and endocrine - 12.9% cases. At T0, significantly lower levels in the group with comorbidities were identified on the domains Pain, Sport and QoL. The CCI in patients with comorbidities was 3.29 ± 0.14, compared to 3.14 ± 0.11 in patients without comorbidities (p<0.01). At the T1 moment, we found an improvement in joint functionality in both groups. The mean value of the VAS score group of patients without comorbidities decreased from 48.18 mm to 21.36 mm (p <0.05) and for the group of patients with comorbidities – 64.2 at /36.2 mm (p<0.001). Significant improvement in joint function in the comorbidities group was in Pain (p<0.01), Sport (p <0.05) and QoL (p <0.01) domains, at the same in patients without comorbidities, the improvement was significant in all 5 domains. Conclusion: Comorbidities are highly associated to knee osteoarthrits and to prove to have a negative influence on the results of the physical rehabilitation program; therefore, we would recommend to apply individualized rehabilitation programs adapted to the associated conditions of each patient.

Disclosure of Interests: None declared

DOI:
10.1136/annrheumdis-2020-eular.2725

YOGA-THERAPY: IMPROVEMENT IN PSORIATIC ARTHRITIS PROMS AT 4 MONTHS

C. B. Colaco1, V. Sadana2, K. Anie1, L. NWUH NHS Trust, CMH Rheumatology Unit, London, United Kingdom; 2LNWWUH NHS Trust, CMH Rheumatology Unit, London, United Kingdom

Background: Psoriatic Arthritis and Psoriasis have a major impact on QOL with associated mood disorders and Cardiovascular disease and Cancer as interrelated co-morbidities. Yoga therapy (YT) has been used in several Long Term Conditions and we have reported Rapid improvement in Proms in RA (RCP 2018) and so compared results of a PsA cohort offered the same YT intervention.

Objectives: This first in UK PsA study investigated: a) impact of a 16 week YT intervention on functional outcomes and QOL in 10 PsA patients, b) acceptability and experiences of the intervention. We present results in comparison to a previously reported RA cohort n=10.

Methods: Ten adult PsA patients (2M 8 F Age 32-67 Avg: 53.7 Y; PsA diagnosis: 6.45 yrs:1 Juvenile onset) consented to 10 individual YT sessions (weekly 4; biweekly x 6) with a yoga therapist in a standard consulting room. The intervention was tailored to the needs and abilities of each patient and included: breath-centered physical yoga postures, breathing and visualization techniques, mantras and meditation, with supportive Lifestyle/behavioural strategies. All participants completed measures pre- and post-intervention (EQ-5D HAQ HADS PGIC) to assess change in health status.

Results: A 10 session course of YT over 16 weeks was completed with 92/100 PsA YT sessions. Note 1 patient had unrelated Trauma and withdrew after 2 sessions. This confirms acceptability of delivery in a clinic setting and all participants reported strong adherence to practices (0-1) and strong belief (0-2) in impact of yoga. (Likert 5 point 0-4 scale).

Further data on only 9 PsA participants will be presented in comparison to the previous RA cohort of 10. PsA patients n=9: Pain reduced 25 % HADS Depression reduced 39% Anxiety reduced 25%

HAQ health score improvement was significant at P<0.04 (ANOVA). EoQol 5d(3L) improved 24% but overall QOL remained below 50% max calculated TTO.

RA patients had recorded stable overall TTO at a higher level 0.63 pre and post YT.

PGIC record of positive change is recorded as a reduction on VAS from 5/5 to 2/4/5.

We will add 12 month FU data set in PsA to compare with 24 month data in the RA cohort.

Conclusion: Yoga-Therapy is deliverable and acceptable in a NHS clinic setting for PsA. Improved PROMs begs further larger studies of mechanisms of bio-psychosocial intervention in long term inflammatory conditions. The outcomes support the Poly Vagal Theory as an effector model, via the bio-mechanistic neuro-inflammatory reflex. We propose further Health Economic analysis of this 2500 yr old Yoga model for long term conditions to examine any long term cost benefit to the NHS.

References:
[1] Coates LC et al Rheumatology 2018:57:1321-1331 Remission in psoriatic arthritis-where are we now?

VAGUS NERVE STIMULATION IN PATIENTS WITH RHEUMATOID ARTHRITIS: 48 MONTH SAFETY AND EFFICACY

F. Koopman1, A. Musters2, M. Backer2, D. Gerlag2, S. Miljko3, S. Grazio4, S. Sokolovic5, Y. Levine6, E. Glass6, D. Chernoff6, N. De Vries2, P. P. Tak1

1Academic Medical Center/University of Amsterdam, Amsterdam, Netherlands; 2University of Amsterdam, Amsterdam, Netherlands; 3University Clinical Hospital, Mostar, Bosnia and Herzegovina; 4Clinical Hospital Center Sestre Milosrdnice, Zagreb, Croatia; 5Sarajevo University Clinical Center, Sarajevo, Bosnia and Herzegovina; 6StePoint Medical, Valencia, United States of America

Background: Rheumatoid arthritis (RA) is a disease with significant remaining unmet medical needs for better treatments. Vagus nerve stimulation (VNS) to activate the inflammatory reflex (cholinergic anti-inflammatory pathway) represents a novel experimental therapy for RA.1 Previously, we reported that inflammatory reflex activation by VNS reduced pro-inflammatory cytokine production and improved disease activity in a 17-patient rheumatoid arthritis (RA) proof-of-concept study using a reprogrammed epilepsy stimulator2; clinical improvement was sustained for 24 months without untoward safety signals.2 Here we report the 48 months results from this long-term observational study.

Objectives: Determine the long-term safety and efficacy of VNS for the treatment of RA.

Methods: In the primary study, a VNS device was implanted into 17 RA patients, mostly with insufficient response to multiple conventional and biologic DMARDs, on stable background of methotrexate (≤25mg weekly) therapy.2 The device electrically stimulated the vagus nerve, 1-4/min/day, over a 12-week open label

Table 1. PsA vs RA post Yoga Therapy PROMs at 4 mth.

Measure	PsA n=9	PsA 4 m	PsA 4 m % RA n=10 PreR4m4 FURA 4m % Pre				
HADS m Depression	6.33	3.88	39	6.7	2.3	65	
HADS m Anxiety	8.56	6.44	25	9.4	4.8	48	
Mean HAQ	0.79	0.75	2	0.78	0.48	26	
M Pain Score (HAQ)	60	45.00	25	57	24	58	
M Health Score (HAQ)	60	42.7	27	p<0.04	51	172	66
M H Utility TTO (EQol5d)	0.41	0.5	24	0.63	0.63	0	
PGIC	5						

Acknowledgments: CMH Rheumatology Support Group

Disclosure of Interests: C Bernard Colaco Grant/research support from: Travel Support for Conference attendance, Speakers bureau: Menarini, Vidhi Sadana; None declared, Kofi Anie: None declared

DOI:
10.1136/annrheumdis-2020-eular.5968