Conclusion: We failed to validate the EHR algorithm identifying patients at high risk for lupus hospitalization in our less severely affected cohort with fewer admission events to analyze. Nonetheless, “criteria counting” using the weightings of the 2019 lupus classification criteria was granular enough to make these case finding criteria themselves prognostic for future hospital risk. It is likely that existing EHRs, using protocols based upon classification criteria scores, are now capable of predicting survival, costs, and admissions automatically.

References:

Disclosure of Interests: Saurav Suman: None declared, Mervat Elisa: None declared, Heidi Rogers: None declared, Aleksander Lenert: None declared, Arnold Stromberg: None declared, william roberts Shareholder of: Own Stocks of Pfizer and Novartis

DOI: 10.1136/annrheumdis-2020-eular.1752

AB1232
ORAL DYSBIOSIS REFLECTS THE IMMUNOLOGICAL ALTERATION OF RA REGARDING TO ACPA AND HLA-DRB1*SE; NAGASAKI ISLAND STUDY

Y. Taui1, M. Temai1, S. Morimori1, D. Sasaki1, M. Nagayashi2, F. Nonaka1, S. Y. Kawashii1, K. Yanagihara1, T. Sai1, K. Koyag1, T. Maeda3, F. Matsuda4, A. Kawakami1, 1Nagasaki University, Nagasaki, Japan; 2National Institute of Public Health, Wako, Japan; 3Nagasaki University, Department of General Medicine, Nagasaki, Japan; 4Kyoto University, Kyoto, Japan

Background: Anti-citrullinated protein antibody (ACPA) production is observed in several organs even prior to the onset of rheumatoid arthritis (RA), and oral mucosa is considered to be one of the important tissues. The presence of HLA-DRB1*SE closely associates with ACPA production. Saliva is considered to reflect the oral microbiota including periodontal disease. Alteration of oral microbiota of RA becomes to be normalized by DMARDs treatment, however, the interaction of the oral microbiota including periodontal disease. Alteration of oral microbiota of mucosa is considered to be one of the important tissues. The presence of HLA-DRB1*SE did not show the difference but the tendency of being especially significant in ACPA positive RA (Figure 1). Among RA subjects, presence of HLA-DRB1*SE did not show the difference but the tendency of being small of alpha diversity (p=0.29).

Conclusion: Our study has suggested for the first time the association of oral microbiota alteration with the presence of ACPA and HLA-DRB1*SE. Oral dysbiosis may reflect the immunological status of patients with RA.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.5147

AB1233
GENDER DIFFERENCE IN DISEASE SEVERITY AND TREATMENT OUTCOMES AMONG PATIENTS WITH RHEUMATOID ARTHRITIS (RA), AXIAL SPONDYLOARTHRITIS (ASXPA) AND PSORIATIC ARTHRITIS (PSA) STARTING TREATMENT WITH TARGETED THERAPY IN THE CZECH REPUBLIC

J. Zavada1, L. Nevkindowa2, K. Pavelka1, P. Horak2, J. Vencovsky2; on behalf of collaborators of the ATTRA registry. 1Institute of Rheumatology, Prague, Czech Republic; 2Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic; 3Faculty of Medicine and Dentistry, Palacky University, 3rd Department of Internal Medicine-Nephrology, Rheumatology, Endocrinology, Olomouc, Czech Republic

Background: The ATTRA registry captures more than 95% of patients with RA, AxSpA, or PSA treated with biologics in the Czech Republic (CZ). In CZ, anti-TNF therapy is reimbursed for RA if DAS28>5.1 despite therapy with csDMARDs, for PSA if disease is not “adequately controlled” with csDMARDs and for AS if BASDAI>4 and CRP/ESR elevated above normal.

Objectives: We aimed to investigate gender-related differences in baseline characteristics and treatment effectiveness among patients with RA, AxSpA, and PSA starting first targeted therapy (TT) in CZ.

Methods: In this observational cohort study, the ATTRA register provided prospectively collected data on RA, AxSpA and PSA patients who initiated their first TT (mostly by TNF) in 2012–2018. Treatment effectiveness and adherence was assessed at 12 months by a change in patient-reported outcomes (PROs), CRP and % drug survival. Differences in categorical and continuous data between males and females were assessed using the Pearson χ2 test (of Fisher exact test, as appropriate), or Mann-Whitney test resp. This study was largely descriptive, and no statistical adjustments have been made.

Results: A total of 1602 RA, 1306 AxSpA, and 493 PSA patients were included. The difference in baseline characteristics between men and starting TT are shown in table 1. Their response and adherence to TT after one year is shown in table 2.

Conclusion: When starting their first TT, males tended to have higher levels of CRP, while females were more often (ex)smokers and reported worse parameters of quality of life across the diagnostic groups. The improvement of PROs was similar in males and females, while males with axSpA and PSA showed larger improvements in CRP Survival on drug at one year was similar, save for AxSpA, where males showed better survival.

References:

Table 1. Baseline characteristics of pts starting first TT – comparison btw males and females

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Male (%)</th>
<th>Female (%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA (n=1362)</td>
<td>70.4</td>
<td>29.6</td>
<td></td>
</tr>
<tr>
<td>AxSpA (n=1306)</td>
<td>70.4</td>
<td>29.6</td>
<td></td>
</tr>
<tr>
<td>PSA (n=493)</td>
<td>64.3</td>
<td>35.7</td>
<td></td>
</tr>
<tr>
<td>Age (yr)</td>
<td>56.0</td>
<td>57.5</td>
<td>0.083</td>
</tr>
<tr>
<td>Age (yr) of diagnosis</td>
<td>58.5</td>
<td>54.0</td>
<td>0.003</td>
</tr>
<tr>
<td>Age (yr) of start of first TT</td>
<td>54.0</td>
<td>57.5</td>
<td>0.003</td>
</tr>
<tr>
<td>Age (yr) of start of 3rd drug</td>
<td>56.0</td>
<td>55.5</td>
<td>0.976</td>
</tr>
<tr>
<td>Smoker or ex-smoker</td>
<td>46.0</td>
<td>42.0</td>
<td>0.227</td>
</tr>
</tbody>
</table>

Table 2. Change in PROs from Start to 12 Months of Targeted Therapy among Males and Females

<table>
<thead>
<tr>
<th>PRO</th>
<th>Male (%)</th>
<th>Female (%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP</td>
<td>2.1</td>
<td>1.1</td>
<td>0.001</td>
</tr>
<tr>
<td>DAS28</td>
<td>2.1</td>
<td>1.1</td>
<td>0.001</td>
</tr>
<tr>
<td>BASDAI</td>
<td>2.1</td>
<td>1.1</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Values are median (IQR) if stated otherwise.
Validation of outcome measures and biomarkers...

AB1234

MICRO-RNA 155 AND MIR-34A: POSSIBLE BIOMARKERS OF INFLAMMATORY BURDEN AND DISEASE ACTIVITY IN ANCA-ASSOCIATED VASCULITIS WITH RENAL INVOLVEMENT

Background: Predicting clinical outcomes in ANCA-related glomerulonephritis remains a major challenge. To date, there is no reliable biomarker able to predict renal prognosis in patients with ANCA-associated vasculitis (AAV). Micro-RNA (miRNA) are non-coding RNAs involved in the fine tuning of immune cells biology and this epigenetic modulation associates with different phenotypes and prognosis in several diseases.

Objectives: To investigate the expression of miR-155 and miR-34a in kidney biopsies of AAV patients according to renal outcome.

Methods: Fifteen patients with AAV and renal involvement (mean age 63.0 ± 13.3 years, disease duration 4.9 ± 2.2 months), who underwent renal biopsy. Demographic, clinical, autoimmunity parameters were recorded for each patient.

Each kidney biopsy was classified according to the Berden Classification, Risk group (according to the ANCA Renal Risk Score) and the chronicity Classification of the Mayo Clinic’s proposed score.

Results: MiR-155 and miR-34a expression was investigated on kidney biopsy tissue using the miNeasy FFPE kit (Qiagen). The quantitative expression of miR-155, miR-34a, and housekeeping gene U1, used as control, was assessed by Real Time-PCR. MiR-155 and miR-34a expression was correlated with histopathological and clinical-laboratory parameters.

Conclusion: Each patient was followed for 12 months and renal outcome was considered according to KDIGO CKD Classification. Markers of inflammation (ESR, CRP) and urine analysis data were recorded at baseline and after 12 months.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.2849