AB1108

ANALYSIS OF HOMOGENOUS PATTERN IN ANTI-NUCLEAR ANTIBODY-INDIRECT IMMUNOFLUORESCENCE ASSAY

S. Y. Kang1, M. Y. Lee1, M. H. Kim1, W. I. Lee1,1 Kyung Hee University, College of Medicine, Laboratory Medicine, Seoul, Korea, Rep. (of South Korea)

Background: Autoantibodies that produce the homogenous pattern on anti-nuclear antibody-indirect immunofluorescence (ANA-IFA) assay using human epithelial cell (HEp-2) substrate are histones, dsDNA and nucleosome. Homogenous pattern may be seen in patients with many different systemic autoimmune diseases as well as organ-specific autoimmune diseases. Homogenous pattern is difficult to distinguish from dense fine speckled (DFS) pattern and other staining pattern may be masked by homogenous pattern.

Objectives: The purpose of this study was to analyze the profile of autoantibodies in patients with homogenous pattern on IFA-ANA assay and to find out the clinical significance of homogenous pattern.

Methods: A total of 103 sera samples with homogenous pattern on IF-ANA assay were obtained. The IFA-ANA assay was performed using the Phd system (Bio-Rad Laboratories, Hercules, CA, USA) with Kallestad HEP-2 slides (Bio-Rad laborator). EliA CTD Screen and EliA dsDNA (Thermo Fisher Scientific, Germany) were performed using the Phd system (Thermo Fisher Scientific). EliA CTD Screen has following specific antigens: U1RNP (RNP70, A, C), SS-A/ Ro (60Kd, 52KDA), SS-B/La, Centromere B, Scl-70, Jo-1, fibrillarin, RNA Pol III, ribosomal P-protein, PM-ScI, PCNA, Mi-2, Sm, and native purified DNA. Specific autoantibody tests against histone and nucleosome assay were performed using Euroimmun microplate ELISA (Euroimmun AG, Luebeck, Germany). Western blot (WB) assay was performed to confirm the presence of anti-DFS70 using HeLa whole-cell lysates and histone dot blot described previously regarding the presence of autoimmune diseases and other clinical conditions of individual patients was obtained from a retrospective review of clinical records.

Results: Of the 103 patients with homogenous pattern on IFA-ANA assay, 21 were diagnosed as systemic autoimmune rheumatic disease (SARD) or organ-specific autoimmune diseases (autoimmune group), whereas 82 were not patients with autoimmune diseases (non-autoimmune group). Among 103 patients, 51 patients (49.5%) were negative on all autoantibody tests performed in this study; CTD screening assay and specific autoantibody tests against anti-DFS70, dsDNA, histone, and nucleosome. The detection rates of autoantibodies were 10.7% for dsDNA, 15.5% for histone, and 19.4% for nucleosome. Total of 32 patients (31%) were positive in at least one of dsDNA, histone, and nucleosome autoantibodies. The detection rate of CTD screening assay was 31.1% (32/103). Of 32 CTD screening positive patients, 18 (56%) were positive for at least one autoantibody described regarding the presence of autoimmune diseases and other clinical conditions of individual patients was obtained from a retrospective review of clinical records.

Background: Japan is the world's most aged country. The number of patients with polymyalgia rheumatica (PMR) is expected to increase more. Classification criteria including ultrasound findindgs were published in 2012(1), but the ability to differentiate PMR from other mimicking diseases was unknown. It is difficult to diagnose PMR accurately. We will clarify whether recently reported ultrasound findindgs (2, 3) which could be characteristic in PMR are helpfule for distinguishing from other mimicking diseases and treatment outcome in suspected PMR patients. Neither diagnostic laboratory test nor specific antibody exist, and inflammatory markers such as C reactive protein and erythrocyte sedimentation rate are not specific.

Objectives: Patients who were clinically suspected of PMR and underwent ultrasound examination from 2008 to 2018. And Patients who visited the hospital with PMR and were diagnosed with PMR from 2008 to 2018.

Methods: Patients who visited the hospital and were diagnosed with PMR were extracted from the medical record database of the hospital. Patients who had been administrated GC at the first visit and whose records were not conformed were excluded. Patients who were clinically diagnosed with PMR without ultrasound(Cli-PMR), patients who were diagnosed with PMR with ultrasound reports(US-Cli-PMR), patients who were diagnosed by the ultrasound expert only based on ultrasound images(US-PMR).

Patient were followed up for one year. Clinical diagnoses were confirmed at the 6 months and 12 months since the first GC administration.

Three groups were compared with each other in the rate of diagnosis change and the time intervals between the initiation of GC treatment and the occurrence of events: recurrence, methotrexate introduction and the normalization of C reactive protein.

The Kaplan–Meier method was used to evaluate the outcomes. Statistical analyses were conducted with R software, version 3.5.2 (R Foundation for Statistical Computing and EJ4).

Results: 545 PMR patients were extracted. 403 of 545 was excluded because of preexisting GC therapy and record availability.

At the 6 months follow-up, 92.8% of the non-US PMR group and 97% of US-PMR group remain PMR and at the 12 months follow-up 88.8% and 95% respectively. There was no significant difference in the three time-to-event outcomes.

Conclusion: Ultrasound did not contribute the improvement of the PMR outcome when compared with the other finding, but the ability to differentiate PMR from other mimicking diseases was unknown. Despite confounding factors, US-PMR group was not inferior. These findings showed that ultrasound may be useful for the complicated cases.

References:
[1] ARTHRITIS & RHEUMATISMVol. 64, No. 4, April 2012; pp 943–954

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.5325

AB1110

QUANTUM BLUE® RAPID TDM ASSAY STANDARDIZATION HIGHLY CORRELATES WITH WHO INTERNATIONAL STANDARD FOR INFlixIMAB

E. Keller1, P. Spies1, F. Frei1, V. Eckhardt1, T. Schuster1, M. Schneider1.
1BÜHLMANN Laboratories AG, Schönenbuch, Switzerland; 2University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland

Background: Therapeutic drug monitoring of RA patients under anti-TNF therapy is based on trough level determination of the drug. Rapid assays and multiple ELISAs are available that measure anti-TNF biologics. An international standard is required to improve comparability among different assays. Recently, WHO introduced a series of anti-TNF standards for etanercept, adalimumab and infliximab. This is the first step for achieving common standardisation of assays available worldwide.

Objectives: The aim of the study was to evaluate the correlation of the WHO standard with BÜHLMANN Quantum Blue® Infliximab standardization and to compare spiking recovery in three commercially available infliximab ELISAs and one infliximab rapid test.

Methods: Calibration curves were generated with BÜHLMANN calibrators and with calibrators made from WHO international standard for infliximab (NIBSC 16/170). Twenty-six serum samples, covering a concentration range from 0.5 µg/mL to 19 µg/mL, were analyzed with both calibration curves and compared by Bland-Altman and Passing-Bablok analysis. Furthermore, recovery of six serum samples spiked with WHO international standard for infliximab was determined in BÜHLMANN TRACKER Infliximab (a), Griplifs/Pregenika Prometheus FX (b), Immunodiagnostik IDKmonitor Infliximab drug level (c) and BÜHLMANN Quantum Blue® Infliximab (d). Spiking recovery experiments were performed according to Westgard 2008.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.5325

AB1109

THE TIME-TO-EVENT ANALYSIS OF THE APPLICATION OF ULTRASOUND TO DISTINGUISHING PMR

T. Kawasuchi1, M. Ogasawara1, K. Yamaji1, N. Tamura1, Juntendo University, School of Medicine; Internal Medicine and Rheumatology, Tokyo, Japan

Background: PMR has a typical clinical picture characterized by pain and tenderness in shoulders, neck, and upper back, and a marked elevation of CRP. The clinical diagnosis of PMR is subjective, and its differentiation from other mimicking diseases is difficult. Although imaging is the mainstay of diagnosis, ultrasound (US) is also helpful in distinguishing PMR from other mimicking diseases. Despite the use of US, the ability to differentiate PMR from other mimicking diseases was unknown. This study aimed to determine whether US could improve the ability to differentiate PMR from other mimicking diseases.

Objectives: To determine whether US could distinguish PMR accurately.

Methods: US was obtained from patients with PMR without ultrasound reports and compared with US-PMR group. Two experienced radiologists performed the analysis. The time to event was the time interval between the initiation of GC treatment and the occurrence of events: recurrence, methotrexate introduction and the normalization of C reactive protein.

Results: Of the 103 patients with homogenous pattern on IFA-ANA assay, 21 were diagnosed as systemic autoimmune rheumatic disease (SARD) or organ-specific autoimmune diseases (autoimmune group), whereas 82 were not patients with autoimmune diseases (non-autoimmune group). Among 103 patients, 51 patients (49.5%) were negative on all autoantibody tests performed in this study; CTD screening assay and specific autoantibody tests against anti-DFS70, dsDNA, histone, and nucleosome. The detection rates of autoantibodies were 10.7% for dsDNA, 15.5% for histone, and 19.4% for nucleosome. Total of 32 patients (31%) were positive in at least one of dsDNA, histone, and nucleosome autoantibodies. The detection rate of CTD screening assay was 31.1% (32/103). Of 32 CTD screening positive patients, 18 (56%) were positive for at least one autoantibody described regarding the presence of autoimmune diseases and other clinical conditions of individual patients was obtained from a retrospective review of clinical records.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.4104