is the identification of in-hospital complication (pneumonia), which should be actively monitored in these patients.

References:

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2020-eular.5129

CLINICAL UTILITY OF THE WARD TRIANGLE OF HIP BONE DENSITOMETRY: DATA FROM AN FLS UNIT

J. Rosas1, A. Pons1, C. Cano1, E. Ivans2, M. Lorente Betoret2, J. M. Senabre Gallego1, G. Santos Soler1, J. A. Bernali2, J. A. García-Gómez3, X. Barberón4 on behalf of AIRE-MB Group. 1Hospital Marina Baixa, Rheumatology, Villajoyosa (Alicante), Spain; 2Hospital Marina Baixa, Rheumatology, Villajoyosa (Alicante), Spain; 3Hospital General Universitario de Elche, Infectious Disease, Elche, Spain; 4Universidad Miguel Hernández de Elche, CIO, Elche (Alicante), Spain.

Objectives: To evaluate the clinical utility of Ward’s triangle (W) of bone densitometry (BMD) of the hip in a population of postmenopausal women referred to BMD from a FLS Unit coordinated by Rheumatology (FLS-REU).

Methods: Retrospective study, which includes, after informed consent, postmenopausal women referred by any department of specialized medicine or primary care medicine, of the health department, to the FLS-REU Unit of our center, during the period of February 2010 to October 2019. General patient data were collected (age, gender), and risk factors for OP. BMD of the lumbar spine (CL) and hip (femoral neck, total hip and W) was performed, except if there was lumbar surgery, severe scoliosis, or a bilateral hip prosthesis. The BMD outcome was distributed in normal (T index (Ts) > -1.2) and OP (Ts: <-2.5 SD and OP (Ts: <-2.5 SD), separated into two groups: mild OP; (Ts: from <-2.5 DE to -3 DE) or severe OP (Ts: < -3 DE).

Results: 5,740 postmenopausal women referred for BMD are included, with the W result available (Table 1). The result of the mean Ts (SD) was: in CL: -1.49 (1.48) SD, femoral neck: -1.33 (1.11) SD and in W: -2.05 (1.12) SD. In 947 (16%) women, the W was normal, with a mean Ts: -0.28 (1.12) SD; osteopenia in 2,606 (45%): -1.83 (1.12) SD and OP in 2,197 (39%) SD, of which 1,010 (61%) had women, the W was normal, with a mean Ts: -0.28 (1.12) SD; osteopenia in 2,606 (45%): -1.83 (1.12) SD and OP in 2,197 (39%) SD, of which 1,010 (61%) had.

The table shows the BMD results of W and CL, the correlation coefficient being those between 0.52 (0.5-0. P < 0.001), although with a Kappa coefficient of 0.26 (0.24-0.28, P = 0.01). The probability that a result in W of normal BMD is nor-

between them being 0.52 (0.5-0. P <0.001), although with a Kappa coefficient of mild-moderate OP and 967 (49%), severe OP.

(45%): -1 .83 (1,12) SD and OP in 2,197 (39%) SD, of which 1,010 (61%) had

women, the W was normal, with a mean Ts: -0.28 (1.12) SD; osteopenia in 2,606 (45%): -1 .83 (1,12) SD and OP in 2,197 (39%) SD, of which 1,010 (61%) had

Table 1. Logistic regression analysis of patient parameters with unad-

justed and adjusted odds ratios for fracture fragility

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Unadjusted odds ratio (95% CI)</th>
<th>Odds ratio adjusted for age (95% CI)</th>
<th>Odds ratio adjusted for age and gender (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at scan (years)</td>
<td>0.99 (0.98-1.01)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gender</td>
<td>1.07 (0.66, 2.84)</td>
<td>1.34 (0.64, 2.80)</td>
<td>1.23 (0.60, 2.52)</td>
</tr>
<tr>
<td>BMI</td>
<td>1.00 (1.00, 1.00)</td>
<td>1.00 (1.00, 1.00)</td>
<td>1.00 (1.00, 1.00)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>0.99 (0.57, 1.70)</td>
<td>0.97 (0.56, 1.68)</td>
<td>0.94 (0.54, 1.64)</td>
</tr>
<tr>
<td>Steroid exposure</td>
<td>1.40 (0.89, 2.21)</td>
<td>1.40 (0.89, 2.21)</td>
<td>1.40 (0.89, 2.21)</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>0.83 (0.32, 2.19)</td>
<td>0.85 (0.32, 2.24)</td>
<td>0.86 (0.34, 2.27)</td>
</tr>
<tr>
<td>Alcohol (3 or more units/day)</td>
<td>1.16 (0.47, 2.86)</td>
<td>1.16 (0.47, 2.87)</td>
<td>1.16 (0.47, 2.89)</td>
</tr>
</tbody>
</table>

LUMBAR SPINE (LS)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Unadjusted odds ratio (95% CI)</th>
<th>Odds ratio adjusted for age (95% CI)</th>
<th>Odds ratio adjusted for age and gender (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ward normal</td>
<td>0.41±1.78</td>
<td>2.95±1.78</td>
<td>2.7±1.78</td>
</tr>
<tr>
<td>N (%): 947 (16)</td>
<td>0.41±1.78</td>
<td>2.95±1.78</td>
<td>2.7±1.78</td>
</tr>
<tr>
<td>Ward osteopenia</td>
<td>1.19±2.43</td>
<td>4.63±2.43</td>
<td>4.63±2.43</td>
</tr>
<tr>
<td>N (%): 2.605 (46)</td>
<td>1.19±2.43</td>
<td>4.63±2.43</td>
<td>4.63±2.43</td>
</tr>
<tr>
<td>Ward OP moderate</td>
<td>-0.77±1.48</td>
<td>2.1±1.48</td>
<td>2.1±1.48</td>
</tr>
<tr>
<td>N (%): -1.25 (35)</td>
<td>-0.77±1.48</td>
<td>2.1±1.48</td>
<td>2.1±1.48</td>
</tr>
<tr>
<td>Ward OP severe</td>
<td>0.75±2.18</td>
<td>3.23±2.18</td>
<td>3.23±2.18</td>
</tr>
<tr>
<td>N (%): -3.25 (49)</td>
<td>0.75±2.18</td>
<td>3.23±2.18</td>
<td>3.23±2.18</td>
</tr>
</tbody>
</table>

Conclusion: Steroid exposure and body composition parameters influence fracture risk in this group of patients with normal BMD, further work will be done looking at the types of fractures and other parameters in this group of patients.


BONE LOSS AND NEW FRACTURES WITH DENOSUMAB TREATMENT

C. Sanguesa1, I. Casafont-Sole1, A. Nack1, S. Holgado Pérez2, M. Martínez-Morillo1, M. Aparicio Rovira3, A. Prior-Español1, M. Aparicio Espinara1, A. Riveros2, L. Mateo1, A. Olive1, L. Gifre1. 1Germans Trias i Pujol University Hospital, Rheumatology, Badalona, Spain.
Background: The incidence and factors related to an inadequate response to denosumab (Dmab) treatment remain unclear.

Objectives: To describe clinical, analytical and densitometric characteristics of patients with inadequate response (IR) to Dmab in clinical practice. IR was defined as the presence of a new fracture [fx-IR] or a significant decrease in BMD (≥5% lumbar or ≥4% femoral) (BMD-IR).

Methods: Retrospective study of patients with IR to Dmab treatment. Data of demographic variables, risk factors for osteoporosis, history of fractures, previous anti-osteoporotic treatment, densitometric and analytical parameters were collected before and after IR.

Results: 22 patients were included (19W:3M) with mean age of 75±10 years. The causes of osteoporosis were: postmenopausal (50%), induced by glucocorticoids (22.7%), alcoholic (9.09%) and multifactorial (18.8%). Most patients were previously treated with bisphosphonates (59.09%, duration 5.2±2.6y) and had previous vertebral fractures (54.54%, median 3). During Dmab treatment, 10 patients presented a BMD-IR (with a mean bone loss up to -3.5% at femur and -5.8% at lumbar spine) and 12 had fx-IR (vertebral [n=8], humerus [n=1], pelvis [n=1], tibia [n=1]). No significant differences were observed in duration of Dmab between both IR groups (Fx-IR: 3.2±1.9 vs BMD-IR: 2.4±1.2y). In the BMD-IR group, the BMD loss was higher at lumbar spine than at total hip (-6.6%±3.7 vs. -1.9%±4.8). Only 1 patient of the fx-IR had a secondary cause of IR (melaenia multiple).

In the fx-IR group, most patients started combined treatment with teriparatide (n=4), 1 changed to teriparatide and 7 remained with Dmab. In the BMD-IR group, most maintained Dmab treatment (n=8) and 2 switched to zoledronate.

Conclusion: Most patients who developed IR to Dmab had been previously treated with bisphosphonates and had previous fragility fractures and appear within the first 3 years of treatment. BMD loss seems to be more marked at spine than total hip. Only one patient had a secondary cause of IR.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.6218

AB09015

BONE MINERAL DENSITY AND FRACTURE FREQUENCY IN PREMENOPAUSAL WOMEN WITH RHEUMATIC DISEASES

N. Toropova1, O. Dobrovolskaya1, O. Nikitin'skaya1, N. Demin1, A. Smirnov1, L. Shornikova1, V.A. Nasenson Scientific and Research Institute of Rheumatology, Moscow, Russian Federation

Background: The onset of the disease in young and middle age is typical for rheumatic diseases (RDS), but most studies on osteoporosis were conducted in patients (pts) older than 50 years, which included postmenopausal women.

Objectives: To assess bone mineral density (BMD), fracture frequency and the factors associated with low BMD in premenopausal women with RDS.

Methods: 160 women (median age, 36 [29; 43] years): 120 pts with RDS (43 rheumatoid arthritis (RA), 53 systemic sclerosis (SSc) and 24 parietic arthritis (PsA)) and 40 age-matched healthy controls were enrolled in the study. We performed a dual-energy X-ray absorptiometry (DXA, Hologic Discovery A, USA) to measure BMD in lumbar spine, femoral neck and total hip. BMD decreasing grade was evaluated by the Z-score <−2SD. All pts were interviewed using a unified questionnaire including assessment of daily dietary calcium intake. Serum vitamin D, C-reactive protein and erythrocyte sedimentation rate (ESR) measurements were done.

Results: 25% pts with RDS and only 8% healthy controls have low BMD (p=0.02), RA, SSc and PsA pts had low BMD in 37%, 21% and 13%, respectively, that was more often than in healthy women (p=0.004, p=0.046 and p= 0.081, respectively). 9.3% RA pts and 75% SSc pts had low energy fractures. BMD of RDS pts in all areas of measurement demonstrated a direct correlation with height, weight, body mass index, and serum vitamin D concentration and an inverse correlation with age and previous dose of glucocorticoids. Also, proximal femur BMD inversely correlated with RDs duration, BMD of femoral neck and total hip inversely correlated with C-reactive protein level in SSc pts. In RA women we found a direct correlation between lumbar spine and femur BMD and ESR.

Conclusion: 25% of premenopausal women with RDS had reduced BMD and needed monitoring and osteoporosis prevention, while 9.3% pts with RA and 75% women with SSc needed anti-osteoporotic treatment.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.2740

AB09016

FACTORS THAT DEMONSTRATED SIGNIFICANT CORRELATION WITH BONE MINERAL DENSITY GAIN WITH DENOSUMAB ADMINISTRATION FOR PATIENT WITH RHEUMATOID ARTHRITIS

I. Yoshii1, Y. Yoshi Hospital, Department of Rheumatology and Musculoskeletal Medicine, Shimanto-City, Japan

Background: Denosumab, a monoclonal antibody of receptor activator of NF-κB ligand promotes a strong action for bone mineral density (BMD) gain. This agent is often used for patients with rheumatoid arthritis (RA) because of its strong anti-osteoclastogenesis action, with that joint structural damage is induced. However, factors what affects BMD gain for patient with RA is still unclear.

Objectives: Factors that may affect BMD gain for patient with RA is evaluated statistically.

Methods: Patients with RA to whom denosumab is administrated consecutively three shots or more were picked up. BMD in lumbar spine (LS) and femoral neck (FN) measured with dual-energy X-ray absorptiometry was routinely measured at the initial administration (BL). BMDs were measured every six months when another denosumab is administrated. Change of BMD for each bone was calculated. Patient's age at BL, on set of RA, disease duration, sex, anti-cyclic citrullinated polypeptide antibodies (ACPA), whether denosumab is naive, body mass index (BMI) at BL were evaluated. BMD in each bone, serum tartrate resistant acid phosphatase 5b (TRACP5b), total type one procollagen-N-peptide (P1NP), calcium (Ca), creatinine (Cr), cystatin C (CysC), estimated glomerular filtration ratio based on CysC (eGFR), serum Cr-to-CysC ratio (Cr/CysC), and Barthel Index, were measured at BL and every six months thereafter. Relationship between BMD gain from BL to second administration and such like factors at BL were evaluated with linear regression analysis at first with univariate model and then multivariate model with factors that demonstrated statistical significance within 5%. Binary logistic regression analysis for these factors was also performed according to BMD gain. These procedures were performed as a same manner regarding with BMD gain from BL to third administration.

Results: A total of 397 patients with 43 males (10.4%) and 354 females (89.6%) were recruited. Average age was 51.3 and average disease duration of RA was 6.9 years. 227 patients (57.4%) was denosumab naıve, and prior to BL, 170 patients were already administered with alendronate in 26, risedronate in 26, minodronate in 23, ibandronate in 12, raloxifene in 39, bezodoxifene in 7, teriparatide in 36. BMD gain in LS from BL to the second administration demonstrated significant correlation with age and TRACP5b at BL with univariate model, and only aging correlated significant negative correlation with BMD gain with multivariate model. In binary logistic regression analysis, aging demonstrated no significant regression with BMD gain. From BL to third administration, BMD gain also demonstrated significant correlation with aging, but no correlation with TRACP5b, but Cr/CysC at BL. These two factors also demonstrated significant correlation with BMD gain in LS, in the BMD gain demonstrated negative and Cr/CysC demonstrated positive correlation. Cr/CysC demonstrated significant regression with BMD gain in LS from BL to the third with binary logistic regression analysis.

Conclusion: These results suggested that BMD gain in LS and FN was affected by different factors. These results may be helpful reference in choosing denosumab against osteoporosis in RA patient.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.3180

Crystal diseases, metabolic bone diseases other than osteoporosis

AB09017

AGE PLAYS A CRUCIAL ROLE IN CRYSTAL ARTHRITIS SEVERITY – A SYNOVIAL FLUID STUDY

B. Ank1,2, M. B. Bigler1, C. Berger1, T. Daikeler1, 1University Hospital of Basel, Rheumatology, Basel, Switzerland; 2Schmerzklinik Basel, Rheumatology, Basel, Switzerland; 3University Hospital of Basel, Department of Biomedicine, Basel, Switzerland; 4University Hospital of Basel, Translational Immunology, Basel, Switzerland; 5University Hospital of Basel, Medical Outpatient Clinic, Basel, Switzerland

Background: Incidence and severity of gout and calcium pyrophosphate deposition disease (CPPD) increase with age (1). Aging is associated with immune senescence, leading to a deregulation of the innate immune system and hence inflammation (2). MRI studies hinted on a significantly higher synovial inflammation in older compared to younger arthritis patients(3). Whether inflammatory