The expression of MMP1 and MMP3 (SF1), 2) THY1⁺ CD34⁺ fibroblasts expressing high levels of P16 (SF2) 3) THY1⁺ fibroblasts expressing high levels of peristin (POSTN) and collagens (e.g. COL1A1, COL3A1) (SF3), 4) THY1⁺ fibroblasts expressing CXCL12 (SF4) and 5) THY1⁺ fibroblasts expressing CXCL12, NR4A1 and CCL2 (SF5). Fig. 2 shows pathway enrichment map of all marker genes; it organizes enriched terms into a network with edges connecting overlapping gene sets. Pseudotime trajectory axis derived from Monocle indicated that SF4 represent a state between SF3 and SF5. Pseudotemporal expression dynamics of THY1 marked the progression of these three subtypes (Graph 1). SF1 and SF2 were proportionally underrepresented and SF3-5 overrepresented in RA (chi-squared = 37.18, p = 1.65e-07). The expression of POSTN, a signature gene of SF3, was not different between RA and OA tissues, but significantly correlated with the synovitis score (Spearman ρ = 0.55, p=0.02), in particular with pathological changes in the sublining. POSTN expression was higher in hand than in knee synovial tissues (mean ± SD IHC score: hand 8 ±2, knee 5 ±2) and in cultured SF (qPCR: 10-fold difference). Accordingly, SF3 was enriched in hand versus knee synovial tissues in the scRNA-seq dataset (chi-squared = 944.87, p < 2.2e-16).

Conclusion: In our meta-analysis, we found comparable subtypes of fibroblasts as in the individual analyses [1-3], showing the robustness of cell phenotype identification using scRNA-seq. The different SF phenotypes appear to be plastic cell states rather than fixed cell subtypes, whose development is controlled by an interrelation between pathological changes in the synovium and joint location.

References:

Disclosure of Interests: Raphael Micheroli: None declared, Moja Frank-Bertencelj: None declared, Sam G. Edalat: None declared, Kerstin Klein: None declared, Tadeja Kuret: None declared, Kristina Buerki: None declared, Adrian Ciurea Consultant of: Consulting and/or speaking fees from AbbVie, Bristol-Myers Squibb, Celgene, Eli Lilly, Merck Sharp & Dohme, Novartis and Pfizer., Oliver Distler Grant/research support from: Grants/Research support from Actelion, Bayer, Boehringer Ingelheim, Competitive Drug Development International Ltd. and Mitsubishi Tanabe; he also holds the issued Patent on mir-29 for the treatment of systemic sclerosis (US8247389, EP2331143), Consultant of: Consultancy fees from Actelion, Acceleron Pharma, AnaMar, Bayer, Baecon Discovery, Blade Therapeutics, Boehringer, CSL Behring, Catenion, ChemomAb, Curzon Pharmaceuticals, Ergonex, Galapagos NV, GSK, Glenmark Pharmaceuticals, Inventiva, Italfarmaco, iQvia, Medac, Medscape, Mitsubishi Tanabe Pharma, MSD, Roche, Sanofi and UCB, Speakers bureau: Speaker fees from Actelion, Bayer, Boehringer Ingelheim, Medscape, Pfizer and Roche, Caroline Ospelt Consultant of: Consultancy fees from Gilead Sciences.

DOI: 10.1136/annrheumdis-2020-eular.3524

OP0243 SERPIN3A3 LIMITS CARTILAGE DESTRUCTION IN OSTEOARTHRITIS BY INHIBITING MACROPHAGE-DERIVED LEUKOCYTE ELASTASE

A. Latourte1,2, A. Combier3, S. Jaullery1, C. Cheriti4, Y. Jouan5, H. K. Eal1,2, M. Cohen Solal1,2, E. Hay6, P. Richette1,2, Hopital Lariboisiere, Rheumatology, Paris, France; 2Hopital Lariboisiere, Inserm U1132, Paris, France

Background: Interleukin-6 (IL-6) plays an important role in osteoarthritis (OA). Transcriptomic analyses (RNAseq) revealed that SerpinA3N, a serine protease inhibitor, is a key target of IL-6 in chondrocyte.

Objectives: This study aimed to examine the role of SerpinA3N and Leukocyte Elastase (Elane), a serine protease targeted by SerpinA3N, in cartilage destruction during OA.

Methods: The role of SerpinA3N was investigated in the destabilization of medial meniscus (DMM) model of murine OA with 1) mice with conditional inducible knockdown of SerpinA3n in cartilage (Col2CreER;Serpin3nfl/fl mice (ΔSerpinA3nCreER)) and 2) C57BL/6 wild type (WT) mice treated with intra-articular injection of SerpinA3N (1,5 or 15nm/week). OA joint lesions were assessed by histology (OARSI and synovitis scores) and micro-CT analysis (osteophyte volume, subchondral bone remodeling).

Because serine proteases targeted by SerpinA3N are not produced by murine chondrocytes, Elane expression (qRT-PCR) was determined in murine macrophages (Raw) stimulated or not by IL-6 (100ng/ml). Recombinant
SerpinA3N (30 nM) and a specific Elane inhibitor, Sivelestat (100 µg/ml) were used on cartilage explants treated by conditioned medium of macrophages pre-treated or not by IL-6 (CM–IL-6). Cartilage catabolism was determined by histology and matrix metalloproteinase MMP-3 production was evaluated by Western Blot and immunohistochemistry (IHC). Weekly intra-articular injections of Sivelestat (1 mM) were performed in the DMM to determine the role of Elane in OA.

Results: ΔSerpinA3N/Cre mice had more severe OA lesions than control littermates 6 weeks after DMM, with greater cartilage damage (mean±SD OARSI score: 5.6±0.4 vs 3.9±0.3, p<0.01), increased synovitis scores (3.0±0.3 vs 1.9±0.3, p=0.03) and bigger osteophytes (7.2±0.8±107 vs 3.8±0.8±107 μ3, p=0.048). Conversely, WT mice treated with intra-articular injections of SerpinA3N 15nM exhibited less severe cartilage loss than mice treated with PBS after DMM (OARSI score: 2.1±0.4 vs 3.9±0.5, p=0.02). Elane mRNA expression was increased in macrophages upon IL-6 stimulation. In cartilage explants, CM–IL-6 activated cartilage catabolism and MMP-3 production, and effect that was blunted by SerpinA3N and Sivelestat. Finally, mice treated with intra-articular injections of Sivelestat had less severe cartilage damage than those treated with PBS after DMM (OARSI score: 3.3±0.47 vs 5.8±0.53, p=0.0046).

Conclusion: SerpinA3N protects against experimental OA via the inhibition of Elane, a pro-catabolic serine protease produced by macrophages. This result highlights the crosstalk between cartilage and surrounding macrophages and open up new therapeutic perspectives.

Acknowledgments: This work has been supported by French Society of Rheumatology and ART Viggio association.

Disclosure of Interests: None declared.

DOI: 10.1136/annrheumdis-2020-eular.4153

M. Pfeiffenberger1,2,3, A. Damerau1,2,3, P. Hoff2,4, A. Lang1,2,3, F. Buttgereit2,3, T. Gaber1,2,3.
1Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Rheumatology and Clinical Immunology, Berlin, Germany; 2Endokrinologikum, Section Rheumatology, Berlin, Germany

Background: Approximately 10% of fractures lead to significant fracture healing disorders, with a tendency to further increase due to the aging population. Of note, especially immunosuppressed patients with ongoing inflammation show difficulties in the correct course of fracture healing leading to fracture healing disorders. Most notably, invading immune cells and secreted cytokines are considered to provide an inflammatory microenvironment within the fracture gap, primarily during the initial phase of fracture healing. Current research has the focus on small animal models, facing the problem of translation towards the human situation. To improve the therapy of fracture healing disorders, we have developed a human cell-based in vitro model to mimic the initial phase of fracture healing adequately. This model will be used for the development of new therapeutic strategies.

Objectives: Our aim is to develop an in vitro 3D fracture gap model (FG model) which mimics the in vivo situation in order to provide a reliable preclinical test system for fracture healing disorders.

Methods: To assemble our FG model, we co-cultivated coagulated peripheral blood and primary human mesenchymal stromal cells (MSCs) mimicking the fracture hematoma (FH model) together with a scaffold-free bone-like construct mimicking the bony part of the fracture gap for 48h under hypoxic conditions (n=3), in order to reflect the in vivo situation after fracture most adequately. To analyze the impact of the bone-like construct on the in vitro FH model with regard to its osteogenic capacity, we cultivated the fracture gap models in either medium with or without osteogenic supplements. To analyze the impact of Deferoxamine (DFO, known to foster fracture healing) on the FG model, we further treated our FG models with either 250 µmol DFO or left them untreated. After incubation and subsequent preparation of the fracture hematomas, we evaluated gene expression of osteogenic (RUNX2, SPPI), angiogenic (VEGF, IL8), inflammatory markers (IL6, IL8) and markers for the adaptation towards hypoxia (LDHA, PGK1) as well as secretion of cytokines/chemokines using quantitative PCR and multiplex suspension assay, respectively.

Results: We found via histology that both the fracture hematoma model and the bone-like construct had close contact during the incubation, allowing the cells to interact with each other through direct cell-cell contact, signal molecules or metabolites. Additionally, we could show that the bone-like constructs induced the upregulation of osteogenic markers (RUNX2, SPPI) within the FH models irrespective of the supplementation of osteogenic supplements. Furthermore, we observed an upregulation of hypoxia-related, angiogenic and osteogenic markers (RUNX2, SPPI) under the influence of DFO, and the downregulation of inflammatory markers (IL6, IL8) as compared to the untreated control. The latter was also confirmed on protein level (e.g. IL-6 and IL-8). Within the bone-like constructs, we observed an upregulation of angiogenic markers (RNA-expression of VEGF, IL8), even more pronounced under the treatment of DFO. Therefore, we conclude that our model is indeed able to mimic correctly the human fracture gap situation and is therefore suitable to study the influence and development of the treatment of bone healing disorders in immunosuppressed patients with ongoing inflammation.

Disclosure of Interests: Moritz Pfeiffenberger: None declared, Alexandra Damerau: None declared, Paula Hoff: None declared, Annemarie Lang: None declared, Frank Buttgereit Grant/research support from: Amgen, BMS, Celgene, Generic Assays, GSK, Hexal, Horizon, Lilly, medac, Mundipharma, Novartis, Pfizer, Roche, and Sanofi, Timo Gaber: None declared.

DOI: 10.1136/annrheumdis-2020-eular.5546

M. Zaisi1, N. Tajić1, K. Sartér1, V. Azzizov1, L. Bucci2, Y. Luo3, J. D. D. Cañete4, F. Ciccia5,6, G. Schett1.
1Universität Düsseldorf, Germany; 2International Rheumatology, Green lane, London, United Kingdom; 3Sichuan University, Chengdu, China; 4Servicio de Reumatología, Hospital Central de la Bahía, Barcelona, Spain; 5Università degli Studi della Campania, Napoli, Italy; 6Department of Precision Medicine, Erlangen, Italy

Background: While it is known that microbial dysbiosis is associated with the onset of rheumatoid arthritis, mechanistic insights have facilitated the development of arthritis remained largely elusive to date. It is especially interesting how microbial dysbiosis affects the transition from asymptomatic autoimmunity to arthritis. We speculated that a breakdown of intestinal barrier function caused by microbial dysbiosis allows immune cells to shuttle from the gut to the joints.

Objectives: To test whether intestinal barrier function is impaired before the onset of human RA and experimental arthritis and to seek for evidence that immune cells from the gut migrate to the joints.

Methods: In a longitudinal cohort of RA-at risk individuals markers of disturbed intestinal barrier function, such as zonulin, were analysed and linked to RA onset. Furthermore, new-onset RA patients were assessed for gut leakage and their intestinal biopsy samples for the expression of tight junction proteins and immune cell infiltration. In the murine model of collagen-induced arthritis, sequential analysis on intestinal dysbiosis, intestinal barrier function and arthritis onset was carried out. Additionally, barrier function was assessed on intestinal organoids exposed to faecal supernatants from eu- and dysbiotic mice with and without inhibition of zonulin. Furthermore, three types of interventions restoring intestinal barrier function were carried out for testing their effects on the inhibition of arthritis onset. Finally, photo-converted cells from the gut were traced in the joints to test for gut-to-joint trafficking from the gut to the joints.

Results: Zonulin, a potent regulator for intestinal tight junctions, was elevated in autonomic mice and men before the onset of arthritis and predicted the onset of human RA. Intestinal barrier functions as well as epithelial tight junctions were decreased before the onset of experimental arthritis and at onset of human RA. In mice, induction of autoimmunity was followed by rapid intestinal dysbiosis followed by gut leakage before arthritis started. Fecal supernatants of arthritic mice induce epithelial barrier dysfunction in intestinal organoids in zonulin independent manner. Restoration of the intestinal barrier in the pre-phase of arthritis using butyrate, CBl1 agonist or zonulin antagonist larazotide inhibited the development of arthritis. Finally, using photoconvertible mice, gut-borne immune cells were identified that homed to the joints when barrier function was impaired.

Conclusion: In summary, these data show the intestinal barrier dysfunction precedes the onset of RA and allows the trafficking of immune cells from the gut to the joints. Targeting of intestinal tight junction function may therefore allow preventing the onset of RA.

Acknowledgments: Funded by the DFG-FOR2886 PANDORA, DFG–CRC118, Staedtler foundation, Johannes und Frieda Marohn-Stiftung, Else Kröner-Fresenius foundation, Interdisciplinary Center for Clinical Research, Erlangen (IZKF), BMBF-MASCARA and the IMI funded project RTCure.

Disclosure of Interests: Mario Zaiss: None declared, Narges Tajić: None declared, Kerstin Sarter: None declared, Vugar Azzizov: None declared, Laura Bucci: None declared, Yubin Luo: None declared, Juan de Dios Cañete: None declared, Francesco Ciccia Grant/research support from: pfizer, novartis, roche, Condor Bioscience; Pfizer, novartis, Lilly, abbvie; Speakers bureau: pfizer, novartis, lilly, abbvie, Georg Schett Speakers bureau: Merck, Roche, BMS, CMS, Celgene, Janssen, Eli Lilly, Novartis, Roche and UCB

DOI: 10.1136/annrheumdis-2020-eular.4251