AB0354
STEPPING UP FOR INFLAMMATORY ARTHRITIS: A PILOT TRIAL TO TEST BEHAVIORAL ECONOMICS STRATEGY TO INCREASE PHYSICAL ACTIVITY IN INFLAMMATORY ARTHRITIS

A. Ogdie1, M. Patel1, J. Curtis2, K. Gavigan3, W. B. Nowell1, J. Baker4,
1University of Pennsylvania, Philadelphia, United States of America; 2University of Alabama, Birmingham, United States of America; 3Global Living Health Foundation, New York, United States of America

Background: Regular physical activity may have benefits for patients with rheumatoid arthritis (RA) and psoriatic arthritis (PsA), but patients with active disease are often reluctant to increase activity. Principles from behavioral economics (BE), a field combining psychology and economics, have been applied to motivate increased physical activity in non-arthritis patients.1 No published studies have examined the application of BE concepts in rheumatology to promote exercise.

Objectives: To assess the feasibility and efficacy of a loss aversion financial incentive for increasing step counts and improving disease symptoms in RA and PsA patients with active disease.

Methods: A randomized controlled pilot trial was performed among patients with RA and PsA. Participants were required to have active disease defined by having at least one swollen joint and a Routine Assessment of Patient Index Data-3 (RAPID3) score>3 (range 0-30 with <3 indicating remission). The trial included two visits (baseline and 14-week) and weekly check-ins via virtual trial platforms, Way to Health and the ArthritisPower app. Patients were given a Fitbit Alta at baseline and completed a two-week run-in period to assess average step count. Patients were then prompted to select a step count goal and complete a commitment contract. After selection of a goal, participants randomized to the intervention arm received a financial loss aversion incentive (each month, patients receiving the incentive had an average of 714 more steps per day over the first 26 weeks to determine how long the effect persisted). These data support further study in this area to promote physical activity by leveraging concepts from behavioral economics.

References:

Disclosure of Interests: Alexis Ogdie Grant/research support from: Pfizer, Novartis, Consultant of: Abbvie, Amgen, BMS, Celgene, Corona, Janssen, Lilly, Pfizer, Novartis, Mitesh Patel Shareholder of: Owner, Catalyst Health LLC, Consultant of: Advisory Board Member for Healthmeine Services, Life. io, Holistic Industries, Jeffrey Curtis Grant/research support from: Abbvie, Amgen, Bristol-Myers Squibb, Corona, Janssen, Lilly, Myriad, Pfizer, Regeneron, Roche, UCB, Consultant of: Abbvie, Amgen, Bristol-Myers Squibb, Corona, Janssen, Lilly, Myriad, Pfizer, Regeneron, Roche, UCB, Kelly Gavigan: None declared, W. Benjamin Nowell: None declared, Joshua Baker: None declared

DOI: 10.1136/annrheumdis-2020-eular.3541

AB0355
EFFECT OF TOFACITINIB IN TREG/TH17 BALANCE IN RHEUMATOID ARTHRITIS

VA. Paccou1, C. Barbati2, F. R. Spinelli3, F. Cecarelli3, S. Mancuso1, C. Garufi1, C. Alessandri3, F. Conti4, 1Sapienza University of Rome, Rome, Italy, 2Sapienza University of Rome, Rome, Italy

Background: Rheumatoid arthritis (RA) is a systemic autoimmune disease that can cause progressive articular destruction (1). The imbalance between Treg and Th17-cells - an effecter T-cell subset acting as Treg antagonists – is closely linked to autoimmunity (2). A shift in the Th17/Treg balance towards the pro-inflammatory Th17 side has been reported in many autoimmune disorders including RA (4-5). Tofacitinib is the first Janus kinases (JAK) inhibitor (JAKi) approved for the treatment of RA and it binds to and competitively inhibits the kinase domain of JAK3, JAK1 and, to a lesser degree, JAK2. Data on JAK1 and Th17 cells/regulatory T cells (Tregs) are only available for ruxolitinib, a JAKi registered for myeloproliferative diseases (6).

Objectives: Our project aimed to investigate the possible effect of Tofacitinib on the Treg/Th17 balance in RA patients.

Methods: We isolated Peripheral Blood Mononuclear Cells (PBMCs) from patients affected by RA at baseline (T0) and after one month of Tofacitinib therapy (T1). By flow cytometry we characterized Treg and Th17 at T0 and T1. Clinical and laboratory data of the patients were collected in a standardized, computerized and electronically filled form. We assessed the disease activity by using DAS-28 (CRP). Data were expressed as mean(SD) or median (inter-quartile range, IQR) according to the variables’ distribution. Mann-Whitney and Spearman test were used. The values of P < 0.05 were considered statistically significant.

Results: We isolated PBMCs from 9 patients with RA (F:M = 7:2; mean age:SD 60±17.4 years; mean disease duration:SD 20±6.6 years, DAS-28 median at T0 4.14 IQR 1.6, at T1 3.08 IQR 1.3). The median percentage of Treg and Th17 at T0 and T1 were respectively: T0 1.85 IQR 0.98 T1 3.12 IQR 1.37, T0 1.64 IQR 1.4, T1 0.6 IQR 1.1. Treg significantly increased after tofacitinib treatment while Th17 showed a tendency in decreasing without achieving a statistical difference (p=0.003 and p=0.8, respectively) (figure 1). DAS-28 was negatively correlated with Treg number (r = -0.76565, p = 0.00021) and positively with Th17 numbers (r = 0.5816, p = 0.01135).

Conclusion: This is the first study that investigated the role of JAKi on the Treg/Th17 balance in RA showing and increase in Treg cells with a concurrent tendency in decrease of Th17 cell population. The restoration of the Treg/Th17 balance was associated with the reduction of DAS-28 (CRP).

References:
Figure 1. Modification of Treg (A) and Th17 (B) populations at baseline and after one month of Tofacitinib treatment in RA patients.

Disclosure of Interests: viviana antonella pacucci: None declared, cristiana barbati: None declared, Francesca Romana Spinelli Grant/research support from: Pfizer, Speakers bureau: Lilly, BMS, Celgene, Fulvia Cecarelli: None declared, Silvia Mancuso: None declared, Cristina Garuti: None declared, cristiano alesandri Grant/research support from: Pfizer, fabricio conti Speakers bureau: BMS, Lilly, Abbvie, Pfizer, Sanofi
DOI: 10.1136/annrheumdis-2020-eular.4403

AB0356
TARGETING THE RHEUMATOID ARTHRITIS SYNOVIAL FIBROBLAST VIA CYCLIN DEPENDENT KINASE INHIBITION (TRAFFIC): A PHASE 1B STUDY TO DETERMINE THE MAXIMUM TOLERATED DOSE OF SELICICLIB FOR REPURPOSING IN RHEUMATOID ARTHRITIS

A. Pratt1, S. Siebert2, M. Cole2, D. Stocken3, S. Kelly3, M. Shaikh3, A. Cranston3, M. Morton3, J. Walker3, S. Frame3, W. F. Ng3, C. Buckley3, I. McInnes3, A. Filer4, J. D. Isaacs5, 1Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom; 2Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom; 3Newcastle University Population Health Sciences Institute, Newcastle upon Tyne, United Kingdom; 4Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, United Kingdom; 5Department of Rheumatology, Barts Health NHS Trust, London, United Kingdom; 6Department of Rheumatology, James Cook University Hospital, Middlesbrough, United Kingdom; 7Newcastle University Clinical Trials Unit, Newcastle upon Tyne, United Kingdom; 8Cyclacel Ltd, Dundee, United Kingdom; 9Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom

Background: Current rheumatoid arthritis (RA) therapeutics target immune inflammation and are subject to ceiling effects, with non-response observed in a third of recipients together with low remission rates. Synovial fibroblasts (SFs) are stromal cells not yet targeted in RA, whose hyperplastic and proliferative properties drive inflammation and tissue destruction. Seliciclib (R-roscovitine) is an orally available cyclin-dependent kinase (CDK) inhibitor that suppresses SF proliferation and ameliorates inflammatory arthritis in rodents.

Objectives: To determine the maximum tolerated dose (MTD) of seliciclib in patients with active RA despite anti-TNF, with or without background conventional disease modifying anti-rheumatic drugs (cDMARDs). Safety and pharmacokinetics (PK) were also evaluated.

Methods: A restricted, one-stage Bayesian continual reassessment method (CRM) determined MTD based on a target dose-limiting toxicity (DLT) probability of 35%. RA patients (DAS28 ≥3.2) were recruited sequentially to cohorts of 3 subjects each. Cohort 1 received 400mg seliciclib daily for 4 consecutive days each week for 4 weeks, added to existing therapy. Each subsequent cohort received a dose determined by the toxicity-based CRM algorithm, calculated upon conclusion of the previous cohort. Safety was assessed through adverse event (AE) monitoring. Associations with relevant PK parameters were sought.

Results: 15 anti-TNF recipients were enrolled, 10 of whom were also taking cDMARDs (median DAS28 ≥3.2). Application of the CRM algorithm prompted one dose increment during the study (to 600mg for cohort 2), but reversion to 400mg for subsequent cohorts (Figure 1A). After treatment of 5 cohorts, 400mg was determined the MTD, with a DLT probability of 0.35 (CI 0.18-0.52; Figure 1B). 6 patients experienced DLTs, of which two were classified as serious AEs (SAEs) in keeping with the safety profile of seliciclib: these are summarised in Table 1. Of 43/65 total AEs reported at any dose that did not contribute to a DLT, 26 were possibly, probably or definitely related to seliciclib; 19 of these 26 were mild, 7 moderate and none severe. The most frequent AE was mild nausea. No relationship of safety and/or tolerability with concomitant cDMARD use or PK was seen.

Table 1. 

<table>
<thead>
<tr>
<th>DLT</th>
<th>Seliciclib dose (mg)</th>
<th>Doses received</th>
<th>Contributing AEs</th>
<th>Contributing SAEs</th>
<th>Description</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>Constipation</td>
<td>Resolved</td>
</tr>
<tr>
<td>2</td>
<td>600</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>Fatigue</td>
<td>Resolved</td>
</tr>
<tr>
<td>3</td>
<td>600</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Fever</td>
<td>Resolved</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>Constipation</td>
<td>Resolved</td>
</tr>
<tr>
<td>5</td>
<td>400</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>Fever</td>
<td>Resolved</td>
</tr>
<tr>
<td>6</td>
<td>400</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>Persistent</td>
<td>AST rise</td>
</tr>
</tbody>
</table>

Conclusion: The MTD of seliciclib has been defined for RA. No unexpected safety concerns were identified to preclude ongoing evaluation in patients, which focuses on clinical, radiological and biological indicators of efficacy.

Disclosure of Interests: Arthur Pratt Grant/research support from: Pfizer, GlaxoSmithKline, Stefan Siebert Grant/research support from: BMS, Boehringer Ingelheim, Celgene, GlaxoSmithKline, Janssen, Novartis, Pfizer, UCB, Consultant of: AbbVie, Boehringer Ingelheim, Janssen, Novartis, Pfizer, UCB, Speakers bureau: AbbVie, Celgene, Janssen, Novartis, Michael Cole: None declared, Deborah Stocken: None declared, Stephen Kelly: None declared, Muddassir Shaikh: None declared, Amy Cranston: None declared, Miranda Morton: None declared, Jennifer Walker: None declared, Sheelagh Frame Employee of: Cyclacel Ltd., Wan-fai Ng: None declared, Chris Buckley Consultant of: Janssen, Pfizer, GSK, Galapagos, Gildeed, Ian McInnes Grant/research support from: Bristol-Myers Squibb, Celgene, Eli Lilly and Company, Janssen, and UCB, Consultant of: AbbVie, Bristol-Myers Squibb, Celgene, Eli Lilly and Company, Gildeed, Janssen, Novartis, Pfizer, and UCB, Andrew Filer: None declared, John D Isaacs Consultant of: AbbVie, Bristol-Myers Squibb, Eli Lilly, Gilead, Janssen, Merck, Pfizer, Roche
DOI: 10.1136/annrheumdis-2020-eular.2443

AB0357
USE OF TOFACITINIB AND REASONS FOR DISCONTINUATION IN CLINICAL PRACTICE

C.Y. Soleté1, B. Serrano Benavente2, L. A. Torrens Cid2, J. Martínez-Barrio2, J. Molina Collada2, J. Rivera3, T. González3, I. Monteagudo3, C. González3, I. Castrejón3, J. M. Alvaro-Gracia1, 1Hospital General Universitario Gregorio Maranon, Rheumatology, Madrid, Spain; 2Hospital General Universitario Gregorio Maranon, Rheumatology, Madrid, Spain; 3Hospital General Universitario Gregorio Maranon, Madrid, Spain

Background: Tofacitinib is an oral JAK 1 and 3 inhibitor for the treatment of moderate to severe active rheumatoid arthritis (RA) or psoriatic arthritis (PsA) in adults with inadequate response or intolerant to one or more conventional disease-modifying antirheumatic drugs (cDMARDs). Since its approval by the European Medicines Agency (EMA), there is limited data about its use in daily practice in Europe.

Objectives: To describe rates and reasons for discontinuation of Tofacitinib in patients with RA and other inflammatory conditions

Methods: We identified patients with a prescription for tofacitinib at our academic center from January 2017 to January 2020. Patients were treated according to their rheumatologist evaluation following standards of care. The following variables were retrospectively collected from the electronic medical record: type of RA, degree of disease activity, disease activity measures before and after treatment, adverse events, dose changes, reasons for discontinuation, concomitant medications, age and sex.

Results: A total of 237 patients were included. The most common reason for discontinuation was inadequate response (45.5%), followed by toxicities (30.8%). The most common AEs were gastrointestinal (27.0%), musculoskeletal (19.5%), and infections (14.0%). The most common reason for discontinuation was inadequate response (45.5%), followed by toxicities (30.8%). The most common AEs were gastrointestinal (27.0%), musculoskeletal (19.5%), and infections (14.0%).

Conclusion: Tofacitinib is an effective and well-tolerated treatment option for RA and PsA. However, discontinuation rates are high, with the most common reasons being inadequate response and toxicities.

Disclosure of Interests: C. Y. Soleté Consultant of: BMS, Celgene, Eli Lilly, Gilead Science, Novartis, Pfizer, Abbvie, Celgene, Eli Lilly, Janssen, Novartis, Pfizer, Roche, Bristol-Myers Squibb, Galapagos, Gilead, Janssen, UCB, AstraZeneca, BMS, Celgene, Eli Lilly, Janssen, UCB, Gilead, Janssen, Novartis, Pfizer, Roche, BMS, Celgene, Eli Lilly, Janssen, UCB, AstraZeneca, BMS, Celgene, Eli Lilly, Janssen, UCB, Gilead, Janssen, Novartis, Pfizer, Roche, BMS, Celgene, Eli Lilly, Janssen, UCB, Gilead, Janssen, Novartis, Pfizer, Roche, BMS, Celgene, Eli Lilly, Janssen, UCB, Gilead, Janssen, Novartis, Pfizer, Roche, BMS, Celgene, Eli Lilly, Janssen, UCB, Gilead, Janssen, Novartis, Pfizer, Roche, BMS, Celgene, Eli Lilly, Janssen, UCB, Gilead, Janssen, Novartis, Pfizer, Roche, BMS, Celgene, Eli Lilly, Janssen, UCB, Gilead, Janssen, Novartis, Pfizer, Roche
DOI: 10.1136/annrheumdis-2020-eular.2443