Results: A significant relationship among the incidence of CVD (i.e. thrombosis or cardiac involvement) and the positivity for anti-dsDNA antibodies was recognized in the first SLE cohort. Accordingly, in the second SLE cohort, significantly impaired micro-vascular endothelial function (identified by reflection of hyperemia post-occlusion area), increased athero-inflammation index and pathologic increase in the CIMT were assessed in patients positive for anti-dsDNA in relation to anti-dsDNA negative patients. Around a 65% of SLE patients displayed a sustained positivity for anti-dsDNA antibodies for more than 7 years. These patients showed a distinctive and specific molecular profile compared with patients that had remained negative for anti-dsDNA, including increased inflammatory profile (IL1B, IL2, IL6, IL17, EOTAXIN, FGF, GMCSF, IFNy, IP10, RANTES, TNF), enhanced oxidative status (lipoperoxides), and higher NETosis (nucleosomes, elastase). Levels of these biomolecules were closely interconnected and associated to their regulatory miRNAs, which accordingly exhibited differential expression in SLE anti-dsDNA(+) vs anti-dsDNA(-) patients. Finally, the frequency for positivity of anti-dsDNA significantly correlated both with markers of endothelial dysfunction and with the presence of atheroma plaques in SLE patients, pointing at the direct involvement of anti-dsDNA-Ab’s in the development of these processes.

Conclusion: 1. Positivity for anti-dsDNA antibodies confers a specific molecular profile linked to an enhanced CV-risk in SLE patients. 2. Moreover, the sustained positivity for anti-dsDNA antibodies fosters the establishment of an atherothrombotic status in these autoimmune patients.

Acknowledgments: Supported by the EU/EFFP – IMI-JU PRECISESADS (n° 115565) and ISCIII (P11B/0837 and RIER RD16/0012/0015), Co-funded with FEDER.

Disclosure of Interests: Alejandra M. Patiño-Trives: None declared, Maria A Aguirre: None declared, Carlos Pérez Sánchez: None declared, Pérez Sánchez Laura: None declared, Maria Luque-Tévar: None declared, Rafaela Ortega Castro: None declared, Maria del Carmen Abalos-Aguilera: None declared, Mario Espinosa: None declared, Pedro Seguí Azpilcueta: None declared, Jacques-Olivier Pers: None declared, Nuria Barbarroja Puerto Grant/research support from: ROCHE and Pfizer., Speakers bureau: ROCHE and Celgene., Marta Alancon-Riquelme: None declared, Eduardo Collantes Estevez Grant/research support from: ROCHE and Pfizer, Speakers bureau: ROCHE, Lilly, Bristol and Celgene, Chary Lopez-Pedraza Grant/research support from: ROCHE and Pfizer.

DOI: 10.1136/annrheumdis-2020-eular.5216

AB0137 DIVERSITY ANALYSIS OF INTESTINAL FLORA IN PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS

Z. Mingxing1, X. F. Yin1, 1The Second Hospital of Shanxi Medical University, Taiyuan, China

Background: Systemic lupus erythematosus (SLE) is a multiple systemic autoimmune disease and its pathogenesis is still not fully understanding. In recent years, there has been reports on the relationship between SLE and intestinal flora.

Objectives: To study the diversity and the intestinal flora intestinal microbes in patients with SLE and further provide new ideas for clinical treatment.

Methods: The stool samples of 28 patients with SLE and 125 normal healthy adults were collected. The 16S rRNA in the specimen was sequenced using the Roche/45 high-throughput sequencing platform, and the differences between the two groups were compared at the level of the phylum and genus.

Results: In SLE patients, as the picture show, the levels of fusobacteria, proteobacteria and TM7 were significantly higher (P<0.05) and the number of firmicutes was significantly decreased (P<0.05) than that of healthy controls at the phylum level. The percentage of bifidobacterium, collinsella, enterococcus, leuconostoc, streptococcus, bifilohopa were significantly higher (P<0.05) and the number of lachnospiria, roseburia, gennymer, devosia, desulfuvibrio were significantly decreased (P<0.05) than that of healthy participants at the genus level.

Conclusion: The diversity of intestinal flora in patients with SLE altered from that of normal population. The differences are likely to be one of the pathogenesis of lupus, which might provide theoretical foundation for the regulation of intestinal flora to treat autoimmune diseases such as lupus.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.5943

AB0138 INCREASED CD38 EXPRESSION LEVELS ON IMMUNE CELL SUBSETS IN SYSTEMIC LUPUS ERYTHEMATOSUS

L. Ostendorf1, 2, P. Enghardt2, 3, P. Durek2, F. Heinrich2, M. F. Mavstregi2, G. R. Burmester1, A. Radbruch2, F. Hippe2, 3, T. Alexander1, 2, Charité – Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; 2Deutsches Rheuma-Forschungszentrum (DRFZ), Berlin, Germany; 3Charité – Universitätsmedizin Berlin, Department of Nephrology, Berlin, Germany

Background: Plasma Cells (PCs) are implicated in the pathogenesis of Systemic Lupus erythematosus (SLE) and their targeting proved a promising treatment modality. As there is a monoclonal therapeutic antibody targeting CD38 licensed for clinical use in multiple myeloma, plasma cell depletion via CD38 seems to represent a promising path in SLE treatment. While CD38 is highly expressed on plasmacells, it is present on the surface of subsets of T and B lymphocytes as well as myeloid cells.

Objectives: Here we aim to identify the differential expression of CD38 on peripheral blood leukocytes in SLE compared to healthy controls (HC) investigate the function of CD38+ T lymphocytes

Methods: We performed flow cytometry to investigate the expression of CD38 on peripheral blood mononuclear cells of SLE patients (n=36) and HCs (n=20). We additionally analyzed the expression of T lymphocytes within the urine of patients with lupus nephritis as well as the skin of SLE patients. We investigated the