Conclusion: Our results show that Malt1 seems to be an important molecule in the development and progression of experimental autoantibody-induced arthritis in mice, highlighting the role of the molecule as a potential therapeutic target in the future.

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2020-eular.1439

AB0099 METHOTREXATE REDUCES THE INVASIVE ACTIVITIES OF PRIMARY RA SYNOVIAL FIBROBLASTS

C. R. Ng1, K. Sheridan1, S. Cowley1, E. Dorris1, D. Veale2, U. Fearon2, A. G. Wilson1, 1University College Dublin, Centre for Arthritis Research, Dublin, Ireland; 2University College Dublin, Rheumatology, Dublin, Ireland; 3Trinity College Dublin, TBSI, Dublin, Ireland

Background: Rheumatoid Arthritis synovial fibroblasts (RASFs) are key player in tissue destruction via the production of a wide range of chemical reactions in the joint with high growth rate and resistance to mortality [1]. Methotrexate (MTX) is a dihydrofolate reductase inhibitor that attenuates inflammation within joints resulting in reduced cartilage and bone damage and is the anchor therapy for RA. Its mechanisms of action are thought to differ from its anti-proliferative effects and are known to include increased adenosine release [2], but may also involve alterations in intracellular methyl donor status resulting in alteration in DNA methylation and gene expression.

Objectives: To investigate the effects of MTX on RASFs auto-aggressive activities, including invasion, migration, proliferation and apoptosis.

Methods: RASF were derived from knee biopsies of RA patients taken at arthroscopy (n=9). Matrigel chambers were used to measure invasive activities. The cells were incubated with DMSO (control), 1μM or 10μM MTX for 96 hours. Wound healing (scratch assays) were used to measure migration. Proliferation and apoptosis were determined using BrdU and caspase-3/7 assays respectively. Significance was determined via repeated measures ANOVA using SPSS software.

Results: Incubation with MTX resulted in significantly reduced invasive activity compared with DMSO control; 1μM (35%, p=0.006) and 10μM (58%, p=0.002) in paired samples. However MTX did not have significant effects on RASF migration, proliferation or apoptosis at either concentration.

Conclusion: Our data reveals that MTX reduces the invasive potential of RASFs in vitro, this effect may contribute to the clinical efficacy of this agent. Further investigation will involve epithelium-wide methylation to determine if the DNA methylome of RASFs is altered by MTX.

References:

Acknowledgments: This abstract arose from work funded by the National Children's Research Centre, Our Lady's Children's Hospital, Crumlin

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2020-eular.5477

AB0100 PHENOTYPIC AND FUNCTIONAL CHARACTERIZATION OF SYNOVIAL FLUID- DERIVED FIBROBLAST- LIKE SYNOVICOYTES IN RHEUMATOID ARTHRITIS

D. Koster1, J. H. Egedal1, M. Hvid1, M. R. Jacobsen1, U. Møller-Ladner2, B. Deleuran1, T. W. Kragstrup1, E. Neumann1, M. A. Nielsen1, 1Department of Biomedicine, Aarhus University, Aarhus, Denmark; 2Internal Medicine and Rheumatology, Giessen, Germany; 3Department of Biomedicine, Aarhus University, Aarhus, Denmark

Background: Fibroblast-like synoviocytes (FLS) are central cellular components in persistent inflammatory joint diseases such as rheumatoid arthritis (RA). Pathological subsets of FLS have been identified from synovial tissue. However, the synovial tissue obtained from arthroplasty procedures is acquired at late disease stages and the cellular yield obtained from synovial tissue biopsies is fairly low. Collectively, challenging the robustness of human RA in vivo and in vitro models. FLS obtained from the synovial fluid (SF-FLS) are proposed as an alternative source of FLS, but a detailed phenotypical and functional characterization of FLS subsets from the synovial fluid has not been performed.

Objectives: The aim of this study was to determine the phenotypical and functional characteristics of synovial fluid-derived fibroblast-like synoviocytes in rheumatoid arthritis.

Methods: In the present study, paired peripheral blood mononuclear cells (PBMC) and SF-FLS from patients with RA were obtained (n=7). FLS were isolated from the synovial fluid by a strict trypsinization protocol and their cellular characteristics and functionality were evaluated at passage 4. Monocultures (SF-FLS) and autologous co-cultures (SF-FLS and PBMC) were established from five patients with RA and subsequently evaluated by flow cytometry, Western blotting and multiplex immunoassays. Human cartilage-spongioses (n=3) with SF-FLS and without SF-FLS (n=3) were co-implanted subcutaneously in SCID mice (n=15), mice with only cell-free human cartilage-spongioses were used as controls (n=12). After 45 days, the implants were evaluated using stained sections to determine the SF-FLS invasion score based on perichondrocytic cartilage degradation. Data are expressed as median (25-75 percentile). P-values <0.05 were considered statistically significant.

Results: The homogeneous subpopulations of FLS, isolated from the synovial fluid, were negative for CD34 and CD45 (99.8%, (98.7-99.7)) and positive for Thy-1 and PDGFRα (94.6%, (98.5-99.6)). Without stimulation, RA SF-FLS showed high and comparable levels of NFκB related pathway proteins and secreted multiple pro-inflammatory cytokines and chemokines dominated by IL-8 (2648 pg/mL, (1327-6116)) and MCP-1 (2458 pg/mL, (692-8719)). SF-FLS increased their ICAM-1 and HLA-DR expression after encountering autologous PBMCs (p<0.01), (p<0.05). Further, SF-FLS and PBMC interacted synergistically in a co-culture model of RA and significantly increasing the secretion of several cytokines (IL-1β, IL-2, IL-6, (p<0.01) and a chemokine (MCP-1, (p<0.01)). The invasion score of the human SF-FLS in vivo was at primary site, 1.6, (1.3-1.7)) and contralateral implantation site 1.5, (1.1-2.3). The invasion score of the human SF-FLS-containing implants both at primary and contralateral site were significantly higher compared with cartilage-spongioses evaluated from SF-FLS-free control mice (p<0.0001).

Conclusion: This phenotypical and functional characterization of SF-FLS, acquired and activated at the site of pathology, lays a foundation for establishing in vivo and in vitro FLS models. These FLS models will be beneficial in our understanding of the role of this cellular subset in arthritis and for characterization of drugs specifically targeting this pathological RA FLS subset.

References:

Disclosure of Interests: Ditte Koster: None declared, Johanne Hovgaard Egedal: None declared, Malene Hvid: None declared, Martin Roelsgaard Jakobsen: None declared, Ulf Müller-Ladner Speakers bureau: Biogen, Bent Deleuran: None declared, Tue Wenzel Kragstrup Shareholder of: iBioTech ApS, Consultant of: Bristol-Myers Squibb, Speakers bureau: TVK has engaged in educational activities talking about immunology in rheumatic diseases receiving speaking fees from Pfizer, Bristol-Myers Squibb, Eli Lilly, Novartis, and UCb., Elena Neumann: None declared, Morten Aagaard Nielsen: None declared
DOI: 10.1136/annrheumdis-2020-eular.3884