References:

1. Németh T, Futosi K, Szabó M, Aradi P, Saito T, Mócsai A, Jakus Z. Impor-

tance of Fc Receptor γ-Chain ITAM Tyrosines in Neutrophil Activation and in

8;47(D1):D745–D751.

3. Sali V, Gianello V, Tiberio L, Sozzani S, Bosisio D. Cytokine Targeting by

4. Kravtsov V, Arefeva L, L3. Volograd State Medical University,

Volograd, Russian Federation; 2Volograd State Medical University,

Volograd, Russian Federation; 3Federal State Budgetary Institution

«Zborovsky Research Institute of Clinical and Experimental Rheumatology»,

Volograd, Russian Federation

Background: Bone mineral density and proteins/peptides determination in blood

and urine as markers of bone resorption and formation are currently used to
diagnose osteoporosis (OP) and metabolic bone diseases. Recent evidence

suggests that in RA changes in the secretion of hormones of white adipose tis-

sue can be revealed [1,2,3,4].

Objectives: To study the clinical and diagnostic value of serum fetuin A, nesfatin,

heserin, leptin, adiponectin, resistin, visfatin determination in RA patients

complicated by OP.

Methods: We examined 88 women with documented diagnosis of RA and mean

length of disease duration of 6.5±6.08 years. We used EULAR/ARA 2010 criteria to diag-
nose the patients. Female patients with II degree of disease activity (DAS28).

Steinbrocker stage II (erosive), rheumatoid factor- and anti-cyclic-citrullinated

peptide antibody-positive were prevalent. We excluded patients who had surgery

or developed an infection within the last 8 weeks, pregnant and breast-feeding

women, those with severe heart, liver or kidney disease, immune deficiency, leuko-

penia or chronic infection.

A control group of 45 healthy females aged of 25 and 59 years were included in

the study. There were no reported findings of joint pain and RA symptoms in the

group. The groups were adjusted for age (p>0.05) and showed no statistically

significant differences.

We measured serum fetuin A, nesfatin, heserin, leptin, adiponectin, resistin,

visfatin levels (µg/ml) using ELISA commercial test systems. We used spectro-

photometer with wavelength of 450nm to detect the test results (+Multiskan-

immunoenzyme analyzer, Finland). We plotted a curve using computer software.

We diagnosed OP using dual-energy X-ray absorptiometry with LUNAR DPX

PRO (GE, USA).

Results: At the first stage, the level of pro-inflammatory cytokines was studied

in a group of healthy individuals. Then, the reference values of these indi-
cators were measured as M ± 2S. Patients with OP and RA had significantly

higher levels of serum pro-inflammatory cytokines (p<0.001). For example,

mean serum Adiponectin levels in RA patients who had normal bone density

and had no OP were 35.21±0.6 µg/ml. Mean serum Adiponectin levels in

RA/OP patients with low bone mineral density were 52.42±0.69 µg/ml. Ada-

ponectin levels of 44 µg/ml and higher were associated with osteoporosis.

Adiponectin levels of 43.99 µg/ml and lower were associated with normal bone
density. Other pro-inflammatory cytokines have demonstrated similar dynam-
ics of level serum.

Conclusion: Thus, we revealed that fetuin A, nesfatin, heserin, leptin, adiponek-

tin, resistin, visfatin levels depend on osteoporosis presence in RA patients. The

test may be used to reduce the risk of low-energy fractures and to improve the

quality of life in RA.

References:

1. Akhvedyan Y et al. Laboratory markers of inflammation and serum nicotina-
mide phosphoribosyltransferase level in rheumatoid arthritis patients // Ann.

2. Kulvizdie V et al. Elevated nesfatin-1 levels in patients with rheumatoid

3. Papiewe Ch et al. Fetuin-A: clinical and laboratory associations in women

4. Polyakova J et al. Serum visfatin determination in rheumatoid arthritis //

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.6711

AB0098

THE EFFECT OF MALT1-DEFICIENCY ON THE

EFFECTOR PHASE OF EXPERIMENTAL AUTOIMMUNE

ARTHRITIS

T. Németh1,2, K. Futosi1, J. Ruland3, A. Mocsaia, 1Semmelweis University,

Department of Physiology, Budapest, Hungary; 2Buda Hospital of the

Hospitalier Order of Saint John of God, Center for Rheumatology, Budapest,

Hungary; 3Technical University of Munich, Institute of Clinical Chemistry and

Pathobiocchemistry, Munich, Germany

Background: The paracaspase Malt1 is a cysteine protease, which forms a

complex leading to the activation of the proinflammatory transcription factor

NF-κB in lymphocytes with CARMA1 and Bcl10. Previously, we showed that the

myeloid equivalent of CARMA1, Card9 is important in neutrophils in Fcγ recep-

tor-mediated cytokine release together with Bcl10 and Malt1. In line with these

findings, we observed a significant decrease in the severity of autoantibody-

triggered arthritis in the absence of Card9 and Bcl10.

Objectives: Our aim was to directly investigate whether the genetic deficiency

of Malt1, the third component of the complex altered the process of the K/BxN

serum transfer arthritis (that resembles to the effector phase of rheumatoid

arthritis).

Methods: We used wild type and Malt1^{−/−} mice for our experiments. Autoanti-

body-mediated arthritis was induced by a single intraperitoneal injection of K/

BxN serum. Clinical signs of joint inflammation were scored on a scale based on

the cardinal inflammatory clues for two weeks. Ankle thickness was measured by

a spring-loaded caliper.

Results: Similar to the deficiency of the other two components of the complex,

Malt1^{−/−} mice showed a partial, but significant decrease in the macroscopic joint

inflammation compared to arthritis serum-treated wild type animals during the

entire experimental process. In line with this phenomenon, Malt1^{−/−} animals had

reduced autoantibody-triggered ankle thickening.
Conclusion: Our results show that Malt1 seems to be an important molecule in the development and progression of experimental autoantibody-induced arthritis in mice, highlighting the role of the molecule as a potential therapeutic target in the future.

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2020-eular.1439

AB0099 METHOTREXATE REDUCES THE INVASIVE ACTIVITIES OF PRIMARY RA SYNOVIAL FIBROBLASTS
C. R. Ng1, K. Sheridan1, S. Cowley1, E. Dorris1, D. Veale2, E. Fearon1, A. G. Wilson1, 1University College Dublin, Centre for Arthritis Research, Dublin, Ireland; 2University College Dublin, Rheumatology, Dublin, Ireland

Background: Rheumatoid Arthritis synovial fibroblasts (RASFs) are key player in tissue destruction via the production of a wide range of chemical reactions in the joint with high growth rate and resistance to mortality [1]. Methotrexate (MTX) is a dihydrofolate reductase inhibitor that attenuates inflammation within joints resulting in reduced cartilage and bone damage and is the anchor therapy for RA. Its mechanisms of action are thought to differ from its anti-proliferative effects and are known to include increased adenosine release (2), but may also involve alterations in intracellular methyl donor status resulting in alteration in DNA methylation and gene expression.

Objectives: To investigate the effects of MTX on RASFs auto-aggressive activities, including invasion, migration, proliferation and apoptosis.

Methods: RASFs were derived from knee biopsies of RA patients taken at arthroscopy (n=9). Matrigel chambers were used to measure invasive activities. The cells were incubated with DMSO (control), 1μM or 10μM MTX for 96 hours. Wound healing (scratch assays) were used to measure migration. Proliferation and apoptosis was determined using BrdU and caspase-3/7 assays respectively. Significance was determined via repeated measures ANOVA using SPSS software.

Results: Incubation with MTX resulted in significantly reduced invasive activity compared with DMSO control; 1μM (35%, p=0.006) and 10μM (58%, p=0.002) in paired samples. However MTX did not have significant effects on RASF migration, proliferation or apoptosis at either concentration.

Conclusion: Our data reveals that MTX reduces the invasive potential of RASFs in vitro, this effect may contribute to the clinical efficacy of this agent. Further investigation will involve epigenome-wide methylation to determine if the DNA methylome of RASFs is altered by MTX.

References:

Disclosure of Interests: None declared

AB0100 PHENOTYPIC AND FUNCTIONAL CHARACTERIZATION OF SYNOVIAL FLUID-DERIVED FIBROBLAST-LIKE SYNOVIOCYTES IN RHEUMATOID ARTHRITIS
D. Køster1, J. H. Egedal1, M. Hvid1, M. R. Jacobsen2, U. Müller-Ladner2, B. Deleuran2, T. W. Kragstrup1, E. Neumann2, M. A. Nielsen3, 1Department of Biomedicine, Aarhus University, Aarhus, Denmark; 2Internal Medicine and Rheumatology, Giessen, Germany; 3Department of Biomedicine, Aarhus University, Aarhus, Denmark

Background: Fibroblast-like synoviocytes (FLS) are central cellular components in persistent inflammatory joint diseases such as rheumatoid arthritis (RA). Pathological subsets of FLS have been identified from synovial tissue. However, the synovial tissue obtained from arthroplasty procedures is acquired at late disease stages and the cellular yield obtained from synovial tissue biopsies is fairly low. Collectively, challenging the robustness of human RA in vivo and in vitro models. FLS obtained from the synovial fluid (SF-FLS) are proposed as an alternative source of FLS, but a detailed phenotypical and functional characterization of FLS subsets from the synovial fluid has not been performed.

Objectives: The aim of this study was to determine the phenotypical and functional characteristics of synovial fluid-derived fibroblast-like synoviocytes in rheumatoid arthritis.

Methods: In the present study, paired peripheral blood mononuclear cells (PBMC) and SF-FLS from patients with RA were obtained (n=7). FLS were isolated from the synovial fluid by a strict trypsinization protocol and their cellular characteristics and functionality were evaluated at passage 4. Monocultures (SF-FLS) and autologous co-cultures (SF-FLS and PBMC) were established from five patients with RA and subsequently evaluated by flow cytometry, Western blotting and multiplex immunoassays. Human cartilage-sponges (n=3) with SF-FLS and without SF-FLS (n=3) were co-implanted subcutaneously in SCID mice (n=15), mice with only cell-free human cartilage-sponges were used as controls (n=12). After 45 days, the implants were evaluated using stained sections to determine the SF-FLS invasion score based on perichondrocytic cartilage degradation. Data are expressed as median (25-75 percentile). P-values <0.05 were considered statistically significant.

Results: The homogeneous subpopulations of FLS, isolated from the synovial fluid, were negative for CD34 and CD45 (98.9%, (97.5-99.7)) and positive for Thy-1 and PDPN (94.6%, (79.9-97.4)). Without stimulation, RA SF-FLS showed high and comparable levels of NFκB related pathway proteins and secreted multiple pro-inflammatory cytokines and chemokines dominated by IL-6 (2648 pg/mL, (1327-6116)) and MCP-1 (2458 pg/mL, (692-8719)). SF-FLS increased their ICAM-1 and HLA-DR expression after encountering autologous PBMCs (p<0.01), (p<0.05). Further, SF-FLS and PBMC interacted synergistically in a co-culture model of RA and significantly increasing the secretion of several cytokines (IL-1β, IL-2, IL-6, (p<0.01)) and a chemokine (MCP-1, (p<0.01)). The invasion score of the human SF-FLS in vivo was at primary site, (1.6, (1.3-1.7)) and contralateral implantation site (1.5, (1.1-2.0)). The invasion score of the human SF-FLS-containing implants both at primary and contralateral site were significantly higher compared with cartilage-sponges evaluated from SF-FLS-free control mice (p<0.0001).

Conclusion: This phenotypical and functional characterization of SF-FLS, acquired and activated at the site of pathology, lays a foundation for establishing in vivo and in vitro FLS models. These FLS models will be beneficial in our understanding of the role of this cellular subset in arthritis and for characterization of drugs specifically targeting this pathological RA FLS subset.

References:

Disclosure of Interests: Ditte Køster: None declared, Johanne Hovgaard Egedal: None declared, Malene Hvid: None declared, Martin Roelsgaard Jakobsen: None declared, Ulf Müller-Ladner: Speakers bureau: Biogen; Bent Deleuran: None declared, Tue Wenzel Kragstrup: Shareholder of: iBio Tech ApS, Consultant of: Bristol-Myers Squibb, Speakers bureau: TWK has engaged in educational fees from Pfizer, Bristol-Myers Squibb, Eli Lilly, Novartis, and UCB., Elena Neu- mann: None declared, Morten Aagaard Nielsen: None declared
DOI: 10.1136/annrheumdis-2020-eular.3884