References:

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2020-eular.1311

AB0044

ESTABLISHED RHEUMATOID ARTHRITIS PATIENTS HAVE INCREASED FREQUENCIES OF FOLLICULAR REGULATORY T CELLS IN PERIPHERAL BLOOD

C. Tomé1, S. C. Barreira2, P. Martins2, A. Valido2, R. Barros2, J. Polido-Pereira1,2, L. Graca1, J. E. Fonseca1,2, R. A. Moura1.

1Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal;
2Serviço de Reumatologia e Doenças Ossées Metabólicas, Hospital de Santa Maria, CHULN, Lisbon Academic Medical Centre, Lisbon, Portugal;
3Instituto Gulbenkian de Ciência, Oeiras, Portugal

Background: Several studies have demonstrated that an immune dysregulation affecting both B and T cells occurs in rheumatoid arthritis (RA). Follicular helper T (Tfh) cells are crucial for B cell maturation, activation and class-switching as well as for germinal center (GC) formation, whereas follicular regulatory T (Tfr) cells can modulate the GC reaction by suppressing Tfh and B cells.

Objectives: The main goal of this study was to analyze the phenotype and frequency of circulating follicular T cell subsets in established RA patients.

Methods: Blood samples were collected from established RA patients with active disease, treated with methotrexate (n=32) and from a group of age and sex-matched healthy donors (n=11). Peripheral blood mononuclear cells (PBMC) were isolated and Tfh (CD4+CXCR5+CD45RO+) and Tfr (CD4+CXCR5+CD25+FoxP3+) cells, as well as their three major subsets [CXCR3+CCLR6- (Th1-like), CXCR3+CCR6- (Th2-like) and CXCR3+CCR6+ (Th17-like)] were evaluated by flow cytometry.

Results: The frequency of circulating Tfh cells was similar between established RA patients and controls. Nonetheless, RA patients had a decreased frequency of Th1-like Tfh cells, and an increased frequency of Th2-like Tfh cells when compared to controls. No significant differences were observed in the frequencies of Th17-like Tfh cells between both groups. The frequency of circulating Tfr cells was significantly increased in RA patients in comparison to controls. Furthermore, Tfr cells from RA patients had significantly increased CD69 median fluorescence intensity (MFI) values when compared to controls. No significant differences were found in the percentages and MFI values of PD-1, ICOS, CD28, CTLA-4, CD40-L and HLA-DR expressed by Tfh and Tfr cells in RA patients when compared to controls.

Conclusion: Established RA patients have increased circulating frequencies of Tfr cells, with higher CD69 expression levels, when compared to healthy controls. These results suggest a pre-activation state of Tfr cells in RA and a potential role in the disease physiopathology.

*RA Moura, J.E. Fonseca and L. Graca are joint senior authors.

Disclosure of Interests: None declared
DOI: 10.1136/annrheumdis-2020-eular.3515

AB0046

NO EVIDENCE FOR DISTURBED TH1 AND TH17 FREQUENCIES IN GCA AND PMR PATIENTS - A STUDY IN THE GRONGEN GPS COHORT

V. Van Slee1, E. Brouwer1, M. G. Huijtema1, W. Abdulahad1, M. Sandoovici1, A. Boots3, K. Van der Geest1.

1University Medical Center Groningen, Groningen, Netherlands
2University Hospital, Rheumatology, Groningen, Groningen, Netherlands
3Janssen Research & Development, Beerse, Belgium

Background: Giant cell arteritis (GCA) is an aging-associated inflammatory disease of the large-sized arteries. GCA clinically and pathogenically overlaps with polymyalgia rheumatica (PMR), which affects the shoulders and hips. In the inflamed tissues, infiltrated CD4+ T-cells display a disturbed Th cell distribution, that may contribute to the development of the diseases. GCA arteries contain pro-inflammatory Thelper 1 (Th1) and Th17 cells, but almost no Th2 cells or regulatory T-cells. In addition to CD4+ T-cells, macrophages are dominant in GCA and PMR tissue infiltrates. We previously found an altered distribution of monocyte subsets, the precursors of macrophages, in the blood of GCA and PMR patients. Others reported changes in the distribution of Th cells in the blood of treatment-naive GCA and PMR patients as well.

Objectives: We sought to replicate previous studies showing a disturbed Th cell distribution in the blood of GCA and PMR patients. Next, we aimed to link the disturbed Th cell distribution to the altered monocyte subset counts.

Methods: To assess the capacity of circulating T cells to produce cytokines, PBMCs were cultured for 4 hours in the presence of 50 ng/mL PMA, 1.6 μg/mL calcium ionophore and 10μg/mL BFA. Cells were then intracellularly stained for IFNγ (Th1 cells), IL-17 (Th17 cells) and IL-4 (Th2) by flow cytometry.

and deep sequencing of the TCR amplicons. TCR-receptor sequences showing clonal expansion from four ACAPA+ HLA-DRB1*0401 patients were further cloned into SKW3 cells for studies of their reactivity by in vitro stimulation with peptides of viral and citrullinated origin from the literature. A positive response, as measured by CD69-up regulation or IL-2 production, was used to define specificity.

Results: Fourteen of the assessed joints were small (1 MTP, 4 MCP and 8 wrists), whereas the remaining three were large joints (2 knees and 1 ankle). Table 1. Individual T cells could be isolated from all of these biopsies, with a varying CD4/CD8 ratio. Based on the flow cytometry phenotyping we could identify CD4 T cells of both Treg and T peripheral helper phenotype already at this early time point. Productive alpha/beta-TCR sequences could be retrieved from 16 out of 17 patients and clonal expansion (>1 copy/TCR) was seen in all but one of these patients, with clone sizes ranging between 2 – 34 copies of each TCR.

Table 1. Patient characteristics.

<table>
<thead>
<tr>
<th>Patients</th>
<th>Gender (F/M)</th>
<th>HLA-SE alleles</th>
<th>Joints</th>
<th>Joint swelling prior to biopsy (months)</th>
<th>Stiffness specific joint (median VAS)</th>
<th>Pain specific joint (median VAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACAPA+</td>
<td>9/3</td>
<td>*0401,0404,0408,0410,0401</td>
<td>1 MTP, 4 MCP, 6 wrists, 1 knee</td>
<td>4 (1-12)*</td>
<td>46 (8-48)</td>
<td>45 (22-99)</td>
</tr>
<tr>
<td>ACAPA-</td>
<td>3/2</td>
<td>0401,0404,0410,0408</td>
<td>1 MTP, 2 wrists, 1 ankle, 1 knee</td>
<td>5 (0.25-5)</td>
<td>59 (15-73)</td>
<td>47 (33-81)</td>
</tr>
<tr>
<td>SKW3 cell lines (patients n = 4)</td>
<td>4/0</td>
<td>*0401,0404</td>
<td>1 MTP, 3 wrists</td>
<td>2 (1-6)</td>
<td>50.5 (42-84)</td>
<td>50 (40-90)</td>
</tr>
</tbody>
</table>

* Data not available for one patient. One patient with prior RA-diagnosis, but after 9 months of treatment remission lasting for 20 years.

Artificial T cell lines were generated from the expanded clones of HLA-DRB1*0401 RA subjects. Our in vitro stimulation protocol identified virus specific CD4 T cells in all samples. So far, no citrulline reactivity has been found. HCMV, followed by HHV are the most commonly found viral reactivities, whereas others were found only in one donor (e.g. JCV, EBV). The majority of clones are thus “orphans”, to which we are still seeking the driving antigen.

Conclusion: Clonally expanded T cell lines were found in the synovium of early RA patients and include virus-specific CD4+ T cells. Our data show that the local T cell repertoire is broad already at the time of RA diagnosis.

Disclosure of Interests: Sara Turcino: None declared, Erik at Klint Paid instructor for: Abbvie (courses and lectures), An De Bondt Employee of: Janssen, Muhammad Sohei Mia: None declared, Anca Catrina: None declared, Frederik Steenwinkel: Employee of: Janssen, Vivianne Malmström Grant/research support from: VM has had research grants from Janssen Pharmaceutical

DOI: 10.1136/annrheumdis-2020-eular.4499

Downloaded from http://ard.bmj.com/ on December 7, 2021 by guest. Protected by copyright.
addition, monocyte subset counts were determined, based on CD14 and CD16 expression. To obtain absolute counts, proportions determined by flow cytometry were corrected by the total CD4+ T-cell and monocyte counts. Th1, Th17 and monocyte subsets were determined in 21 GCA patients, 19 PRR patients and 19 healthy controls (HC). Th2 cells were determined in 10 GCA patients, 10 PRR patients and 10 HC. All GCA and PRR patients were newly-diagnosed and treatment-naïve. HC were age- and sex-matched and without any immunomodulatory medication.

Results: Both absolute counts and percentages of peripheral Th1 cells, Th17 cells and Th2 cells did not differ between GCA/PRR patients and HC. The monocyte in GCA and PRR was mainly attributed to an expansion of the classical monocyte subset. Counts of monocyte subsets were not strongly correlated with counts of either Th1 or Th17 cell counts. In GCA patients, the ESR correlated positively with counts of intermediate monocytes (R=0.63), but this was not observed in PRR patients.

Conclusion: Compared to most previous work, we report similar circulating Th1 and Th17 cell counts in HC, but lower counts in treatment-naïve GCA patients than previously reported (Table 1). Furthermore, numbers of Th1 and Th17 cells in peripheral blood showed no relationship with monocyte subsets. As our protocol for defining Th1 and Th17 cells appears to be similar to the other studies, we propose differences in patient selection. Alternatively, Th1 and Th17 skewing should be studied at the site of inflammation, since Th1 and Th17 skewing cytokines are all highly expressed by macrophages at the inflammatory site. This study shows the importance of replicating previous research, as key concepts of disease pathology are derived from data on disturbed Th cell distribution.

Table 1. Observed median percentages of circulating Th1 and Th17 cells in GCA patients and age-matched HC. Shown are outcomes from several previous studies as well as the present study. Deng et al, Terrier et al and Saadoun et al found elevated Th1 cell percentages in GCA, whereas Samson et al found them lower. All four previous studies showed elevated Th17 percentages in GCA.

<table>
<thead>
<tr>
<th>Reference</th>
<th>GCA HC</th>
<th>GCA HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deng et al., Circulation, 2010</td>
<td>20 12</td>
<td>2.2 0.4</td>
</tr>
<tr>
<td>Terrier et al., Arthritis Rheumatol, 2012</td>
<td>22 12</td>
<td>2.5 0.6</td>
</tr>
<tr>
<td>Saadoun et al., Arthritis Rheumatol, 2015</td>
<td>22 17</td>
<td>2.5 0.6</td>
</tr>
<tr>
<td>Samson et al., Arthritis Rheumatol, 2012</td>
<td>10 14</td>
<td>0.7 0.3</td>
</tr>
<tr>
<td>This study</td>
<td>12</td>
<td>0.6</td>
</tr>
</tbody>
</table>

DOI: 10.1136/annrheumdis-2020-eular.5618

AB0047

T-CELL IMMUNOGLOBULIN AND MUCIN DOMAIN-CONTAINING PROTEIN 3 EXPRESSION IN REGULATORY T CELLS OF ANKYLOSING SPONDYLITIS PATIENTS AND THE CORRELATION WITH DISEASE ACTIVITY

Y. Wang1, X. Huang2, J. Chen1, M. Liu1, W. Deng1, Z. Huang1, T. Li1

1Guangdong Second Provincial Central Hospital, Department of Rheumatology and Immunology, Guangzhou, China

Background: Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease. Regulatory T cells have been found in peripheral blood of AS patients. However, there is a controversy regarding the relative number and function of regulatory T cells in AS. T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is a negative immune regulator that participates in immune responses and widely expresses on a variety of immune cells. Many studies have shown that Tim-3 participates in tumors, infections, hematological system diseases and autoimmune diseases (such as systemic lupus erythematosus, rheumatoid arthritis, autoimmune hepatitis, etc). While there has not yet clinical trials with large samples to verify whether or not Tim-3 is involved in the incidence of AS and the relationship between the disease activity of AS and the expression of Tim-3 in regulatory T cells.

Objectives: The present study aimed to identify the Tim-3 expression in regulatory T cells in AS patients, and the association between Tim-3 and the disease activity of AS.

Methods: There were 47 patients diagnosed as AS and 51 age- and sex-matched healthy controls (HCs) from Guangdong Second Provincial Central Hospital enrolled in the study. The clinical information of the AS patients was recorded in detail and the disease activity was calculated. The positive expression rates and medium fluorescence intensity (MFI) of Tim-3 in regulatory T cells were examined by flow cytometry. Statistical approaches were used to analyze the experimental data of patients and controls.

Results: The Tim-3 cells level was significantly decreased in AS patients compared to the healthy controls (5.14±0.27 vs 4.38±0.23, P=0.032, Fig 1 A). Tim-3 expression in regulatory T cells was lower in AS patients than the HCs (63.29±2.39 vs 52.56±3.49, P=0.013, Fig 1 B). And Tim-3 MFI in regulatory T cells was significantly decreased too (1355.04±171.44 vs 859.19±105.11, P=0.016, Fig 1 C).

The Tim-3 expression correlated negatively with BASDAI (r=-0.39, p=0.014) and BASFI (r=-0.39, p=0.015) in AS patients. However, the Tim-3 expression in the T cells has no correlation with diseases activity in patients.

Conclusion: According to the test results, we could confirm that regulatory T cells participate in the progression of AS, and it has negative relationship with disease activity. Tim-3 can express in Treg, but whether Tim-3 can be used as a potential target for AS treatment in future need further verified.

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.4499

T. Yan1, J. Li1. 1The Second Hospital of Shanxi Medical University, Taiyuan, China

Background: Autoimmune uveitis is a group of inflammatory diseases that affect the uveal tract such as iris, cilia and choroid. In addition to diabetic retinopathy and age-related macular degeneration, uveitis is one of the main causes of blindness in developed countries. The disease is autoimmune-mediated, and abnormal immune responses are induced by pathogenic antigens such as retinal soluble antigens and retinal interphotoreceptor retinoid-binding protein (IRBP), and autoimmune inflammation is caused by specific cytoketic effects, immune complex responses and delayed hypersensitivity reactions. It has been found that the disorder of lymphocyte subsets, mainly due to the number and function defects of regulatory T cells (Tregs), may be involved in the development of uveitis. IL-2 is a key cytokine in T cell differentiation. As a new type of immunomodulator, IL-2 has achieved preliminary efficacy in the treatment of systemic lupus erythematosus, ankylosing spondylitis, Sjogren’s syndrome and other diseases, but there is no clinical evidence of IL-2 in the treatment of autoimmune uveitis. The purpose of this study was to investigate the expression of T lymphocytes in patients with autoimmune uveitis and the effect of low dose IL-2 on their immune status.

Objectives: To investigate the expression of peripheral blood lymphocyte in patients with autoimmune uveitis and evaluate the short-term efficacy and safety of low-dose IL-2 combined with methylprednisolone.

Methods: A total of 108 patients with autoimmune uveitis and 93 healthy subjects who visited our hospital from January 2016 to April 2019 were collected. Twenty-three patients were treated with a low dose of IL-2 (50IU/U day for 5 consecutive days) on the basis of conventional treatment.