The modified ultrasonography scoring system integrated oral mucosa and major salivary glands is able to improve the diagnostic specificity of patients with pSS.

Figure 1. Ultrasonography image of the normal buccal tissue. E = epithelial membrane of buccal mucosa; ST = subepithelial connective tissue; M = buccinator muscle.

Figure 2. Ultrasonography image of pSS patient reveals decreased thickness and heterogeneous hyperechogenicity of buccal mucosa. E = epithelial membrane of buccal mucosa; ST = subepithelial connective tissue; M = buccinator muscle.

References:


Acknowledgments: This work was partly supported by National Natural Science Foundation of China (No. 81571684)

Disclosure of Interests: None declared

DOI: 10.1136/annrheumdis-2020-eular.4012

Methods: Longitudinal study in patients with SpA and PsA with active disease (defined as patients who were going to start or switch biologic disease modifying antirheumatic drugs [bDMARD] therapy according to physician criteria and in agreement with clinical guidelines). MASEI evaluation was performed at baseline, 3- and 6-months visits. MASEI and Outcome Measures in Rheumatology (OMERACT) enthesis Power Doppler (PD) definitions were checked. Each enthesis was scanned in both the longitudinal and transverse planes, and 5-second videos were recorded for reliability. An inter-reader analysis by three readers was performed. For statistical analysis t-Student test was used to determine changes between visits and kappa test was used for reliability.

Results: A total of 72 US evaluations of 25 patients were included, of whom 13 (52%) were ankylosing spondylitis (AS) patients, 9 (36%) PsA, and 3 (12%) non-radiographic axial spondyloarthritis (nr-axSpA). Mean age was 51.2±14.1 years and 13 (52%) were females. Mean DAS28 (3.5±1.2) for peripheral involvement, mean BASDAI (5.8±2) for axial involvement, and CRP values (13.1±13.6) reflect moderate-high disease activity at baseline. US parameters at baseline and at the 3- and 6-month follow-up visits are shown in Table 1. Global MASEI score was responsive at the 3- and 6-month follow-up visit (-4.9 and -5.7, respectively) (p<0.05) and both MASEI and OMERACT PDUS definitions of active enthesitis improved significantly at 3- (0.6 and -1.1) and 6-month follow-up visits (0.7 and -1.1) (p<0.05). Reliability of PD MASEI definition among the three readers was excellent (kappa = 0.918).

Table 1. MASEI evaluation at baseline, 3- and 6-month follow-up visits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline n=25</th>
<th>3 months n=25</th>
<th>6 months n=22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal MASEI score</td>
<td>28±9.3</td>
<td>23.2±7.6</td>
<td>24.7±8.1</td>
</tr>
<tr>
<td>PD US MASEI score</td>
<td>1.6±0.3</td>
<td>1.1±1.1</td>
<td>1.0±1.1</td>
</tr>
<tr>
<td>PD US OMERACT score</td>
<td>1.6±1.2</td>
<td>0.9±0.9</td>
<td>0.8±0.9</td>
</tr>
</tbody>
</table>

*Student test for comparison to baseline

Conclusion: MASEI score significantly improves at 3 and 6 months of follow up in patients under bDMARD treatment and both MASEI and OMERACT Doppler definitions of active enthesitis reflects treatment response. These findings support the usefulness of PD US in the assessment of bDMARD treatment response in SpA and PsA.

Disclosure of Interests: Juan Molina Collada: None declared, Cristina Macià-Villa: None declared, Chamaïda Plasencia: None declared, Jose-Maria Alvaro-Gracia: Grant/research support from: Abbvie, Eli-Lilly, MSD, Novartis, Pfizer, Consultant of: Abbvie, BMS, Janssen-Cilag, Eli-Lilly, MSD, Novartis, Pfizer, Sanofi, Tigenix, Roche, UCB, Paid instructor for: Eli-Lilly, Pfizer, Roche, Speakers bureau: Abbvie, BMS, Janssen-Cilag, Eli-Lilly, Gedeon Richter, MSD, Novartis, Pfizer, Sanofi, Tigenix, Roche, UCB, Eugene de Miguel Grant/research support from: Yes (Abbvie, Novartis, Pfizer). Consultant of: Yes (Abbvie, Novartis, Pfizer), Paid instructor for: Yes (AbbVie, Novartis, Pfizer, MSD, UCB, Roche, Grunenthal, Janssen, Sanofi), Speakers bureau: yes (AbbVie, Novartis, Pfizer, MSD, BMS, UCB, Roche, Grunental, Janssen, Sanofi)

DOI: 10.1136/annrheumdis-2020-eular.6425

SAT0567 USE OF THERMOGRAPHY OF HANDS AND MACHINE LEARNING TO DIFFERENTIATE PATIENTS WITH ARTHRITIS FROM HEALTHY SUBJECTS

I. Morales-Ivorra1, 2, D. Grados Canovas1, C. Gómez Vaquero3, J. M. Nolla3, J. Narvaez4, C. Moragues Pastor4, J. A. Narváez5, J. Hernandez6, J. C. Sardíñas2, B. Busque1, D. Madrid1, J. Bove1, M. A. Marin-López3, *Hospital Insular de Canarias, Las Palmas, Spain; 2Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Spain

Background: The early diagnosis of rheumatic diseases improves their prognosis. However, patients take several months to reach the rheumatologist from the beginning of the first symptoms. Thermography is a safe and fast technique that can capture the heat of an object through infrared photography. The inflammation of the joints causes an increase in temperature and, therefore, can be measured by thermography. Machine learning methods have shown that they are capable of analyzing medical images with an accuracy similar or superior to that of a healthcare professional.

Objectives: Develop an algorithm that, based on thermographic images of hands and machine learning, differentiates healthy subjects from patients with rheumatoid arthritis (RA), psoriatic arthritis (PsA), undifferentiated arthritis (UA) and arthritis of hands secondary to other diseases (SA).

Methods: Multicenter observational study conducted in the rheumatology and radiology service of two hospitals. Patients with RA, PA, UA and SA who attended the follow up visit and healthy subjects (companions and healthcare professionals) were recruited. In all cases, a thermal image of the hands was taken using a Flir One Pro or Thermal Expert TE-Q1 camera connected to the mobile and an ultrasound of both hands. The degree of synovial hypertrophy (SH) and power