Background: Low immunoglobulin (lg) levels can occur after rituximab treat-ment and the clinical significance is not completely understood. Not all patients (pts) who develop low lg levels after rituximab are at an increased risk of seri-ous infection (SI), but factors such as pre-existing low lg levels, prior biologic therapies, history of SI and other disease and age-related factors may increase the risk.

Objectives: To assess the risk of SI in pediatric pts with prolonged low IgG or IgM serum concentrations following rituximab treatment for GPA or MPA in a global clinical trial.

Methods: In the Phase 2a PaPERS study (WA26515), pts aged ≥ 2 to ≤ 18 yrs with GPA or MPA received 4 weekly intravenous rituximab infusions of 375mg/m² body surface area and concomitant oral glucocorticoid taper. After 6 months, pts could receive further rituximab and/or other immunosuppressants at the investi-gator’s discretion during a minimum 12-month follow-up phase. Pts with IgG/IgM levels below age-specific reference ranges at baseline were excluded. IgG levels were measured every 4–12 wks. SI occurrence was assessed during/after low IgG or IgM. Prolonged low lg was defined as IgG or IgM levels < lower limit of normal (LLN) reference range for age for a ≥ 4-month period.

Results: All 25 pts completed 4 weekly rituximab infusions and the 6-month Remission Induction Phase; 24/25 pts completed ≥ 18 months of follow-up. 17 pts received additional rituximab treatments after Month 6. 11 pts received concomitant immunosuppressants (cyclophosphamide, azathioprine, mycophene-nolate mofetil) during the study. All pts had a decrease in IgG and IgM mostly after the first rituximab infusion. There was no consistent trend in IgG or IgM levels over time and no clear relationship between low IgG or IgM levels and the number of follow-up rituximab treatments. 18 pts (72%) had prolonged low IgG ≥ 4 months, of whom 5 had IgG levels < LLN at screening and/or baseline; in 7 pts, IgG levels returned to within normal range by study end. During or after prolonged low IgG, 6/18 pts experienced a total of 7 SIs. Three pts received treatment with intravenous lg. 19 pts (76%) had prolonged low IgM, of whom 5/18 pts experienced a total of 7 SIs. Three pts received treatment with intravenous lg. The risk of SI occurrence was not clearly related to timing of low lg.

Conclusion: In pediatric pts with GPA/MPA treated with rituximab, there was no consistent pattern in lgG or lgM levels over time. The majority of pts with prolonged low lgG or lgM did not experience any SIs; no increase in the number of SIs was observed over time or with multiple rituximab treatments. While no firm conclusions can be made on a possible relationship between prolonged low lgG or lgM and risk of SI following rituximab due to study limitations (low pt numbers, prolonged low lg or lgM did not experience any SIs; no increase in the number of SIs was observed over time or with multiple rituximab treatments). A trend toward increased SI occurrence in pts with low lgG levels was observed and further studies are needed to confirm these findings.

Disclosure of Interests: Simone Meleaga Speaker of: Hoffmann-La Roche, Employee of: Hoffmann-La Roche, Paul Brogan Grant/research support from: Roche, Novartis, SOBI, Chemocentryx, Novimmune, Consultant of: Roche, SOBI, UCB, Novartis, Speakers bureau: Roche, SOBI, UCB, Novartis, Gavin Cleary Speakers bureau: AbbVie, Aimee Hersh: None declared, Ozgur Kasap- copur: None declared, Satyapal Ranagaraj: None declared, Rau Yeung Consult- ant of: AbbVie, Novartis, Speakers bureau: AbbVie, Novartis, Andrew Zelt: None declared, Jennifer Cooper Employee of: Genentech, Inc., Pooneh Pordelai Share-holder of: Roche, Employee of: Roche, Patricia Lehane Shareholder of: Roche, Employee of: Roche, Patricia Lehane Shareholder of: Roche, Employee of: Roche, Patricia Lehane Shareholder of: Roche, DOI: 10.1136/annrheumdis-2020-eular.5819

SAT0504

STING-ASSOCIATED VASCULOPATHY WITH ONSET IN INFANCY (SAVI SYNDROME) CAN MIMIC JUVENILE IDIOPTIC ARTHRITIS.

M. Lopez Corbeto 1, E. Moreno Ruzafa 2, 3, Hospital Universitari Vall d'Hebron, Pediatric Rheumatology, Barcelona, Spain; 2, Hospital Universitari Vall d’Hebron, Barcelona, Spain

Background: STING-associated vasculopathy with onset in infancy (SAVI syn-drome) can mimic Juvenile Idiopathic Arthritis.

Objectives: The aim of this study is to describe a detailed cohort of patients with SAVI syndrome and highlight the similarity, in some cases, of the phenotype of this disease with Juvenile Idiopathic Arthritis.

Methods: 7 patients diagnosed with SAVI syndrome from the institution Hospital Universitari Vall d’Hebron were recruited. Written informed parental consent was obtained for the use of clinical data and pictures reported. Demographic, clinical, analytical, lung function and previous and current treatment are described.

Results: Patient 1, a 11-year-old boy, was identified to carry a de novo p.V155M mutation in TMEM173. He presented at first month of life with recurrent bronchial infection and skin vasculitis lesions in nose, cheeks and toes. Arthritis affected hands, toes and knees but no erosions were found at X-Ray. Fever was not reported. High-resolution computed tomography (HRCT) of the lungs identified a nonspecific interstitial pneumonia (NSIP) and a lung biopsy showed lymphoid hyperplasia. Elevated inflammatory markers were reported and rheumatoid fac-tor (RF), ACPA antibodies and antinuclear antibodies (ANA) were also positive. At the age of 6 years Ruxolitinib (RX) was introduced at the initial dose of 5mg twice daily with an improvement of skin disease and lung function. Arthritis was well controlled and RX was well tolerated.

Patient 2, a 17-year-old girl, was identified to carry a de novo p.V155S mutation in TMEM173. She presented at the age of 3 with a severe polyarthritis of large and small joints. No fever, skin or respiratory symptoms were reported at the beginning of the disease. Laboratory tests were positive for RF and ACPA anti-bodies. She was diagnosed with Polycarticular JIA and was treated with steroids and methotrexate without improvement. Few months later she reported dyspnoea with recurrent bronchial infections. HRCT showed NSIP and lymphoid inter-stitial pneumonia was found at the lung biopsy. RX was initiated at the age of 17 years but at this time lung fibrosis was stabilised. Moreover, RX was not well tolerated due to headache. She requires continuous domiciliary oxygen and has been included to lung transplant.

Finally, patient 3, a 29-year-old man, was recently diagnosed with a de novo p.V155M mutation in TMEM173. He presented at the age of 7 years with symmet-ric polycarticular arthritis after a bronchial infection that course with fever. No skin manifestations were objectified. Autoimmune lab test was positive for RF, ACPA, and ANA. With the diagnosis of Polycarticular JIA he received different treatments with no response. Due to recurrent bronchial infections a HRCT was performed showing an ILD at bases and follicular bronchiolitis with NSIP pattern in a lung biopsy. Functional tests were worsening without a response to different treatments. SAVI syndrome was suspected, and genetic test was performed with positive result. RX was initiated but compliance was not good.

Conclusion: SAVI syndrome is a rare monogenic autoinflammatory disease with few cases reported in the literature. Disease phenotype could be different in every patient, with no presence of skin vasculitic lesions or fever. Patient 2 and 3, in contrast with patient 1, had severe articular and lung manifestations with no skin involvement. Furthermore, lab tests were positive for RF and ACPA and were misdiagnosed as JIA so genetic test was performed later in the follow-up. Being aware of the distinct phenotype of the disease could help the clinicians to make a PRONTO diagnostic and reassess the patients with these presentations that not respond well to conventional treatments.

Disclosure of Interests: None declared.

References:

SAT0505

PLUTO TRIAL OF CONCURRENT BELIMUMAB IN PAEDIATRIC PATIENTS WITH CHILDHOOD-ONSET SYSTEMIC LUPUS ERYTHEMATOSUS (CSLE): PATIENT RESPONSES OVER TIME

N. Rupert1, L. Mccann2, S. Takai3, C. Pilkington4, D. Bass4, B. Ji5, A. Hammer5, M. Okly6, G. Eriksson7, H. Quasny7, H. Brunner8, Istituto Giannina Gaslini, Genoa, Italy; 2Alder Hey Children's Hospital, Liverpool, United Kingdom; 3Kagoshima University, Kagoshima, Japan; 4Great Ormond Street Hospital, London, United Kingdom; 5GlaxoSmithKline, Collegeville, United States of America; 6GlaxoSmithKline, Uxbridge, United Kingdom; 7GlaxoSmithKline, Research Triangle Park, United States of America; 8Children's Hospital, Cincinnati, United States of America

Background: Belimumab (BEL) is a human monoclonal antibody that specifically inhibits B-cell activating factor (BAFF). PLUTO is an ongoing trial evaluating efficacy and safety of intravenous (IV) BEL in children ≥5 years of age with cSLE. Efficacy, and safety endpoints of PLUTO have been reported; briefly, numerically more BEL vs PBO pts met the primary and major secondary efficacy endpoints. We present patient (pt) responses to BEL over time.

Objectives: To evaluate changes in SLE Responder Index (SRI) 4 and SRI6 responses, and disease activity over 52 weeks, in paediatric pts receiving BEL, or placebo (PBO), plus standard SLE therapy (SST).

SAT0506

STING-ASSOCIATED VASCULOPATHY WITH ONSET IN INFANCY (SAVI SYNDROME) CAN MIMIC JUVENILE IDIOPTIC ARTHRITIS.
Methods: PLUTO (GSK Study BEL114055, NCT01649765) is a Phase 2, randomised, double-blind, placebo-controlled study. Pts 5–17 years of age with active cSLE were randomised to monthly BEL 10mg/kg IV, or PBO, plus SST. Endpoints assessed: SRI4 and SRI6 response rate, mean percentage and absolute change from baseline in Safety of Estrogens in Lupus Erythematosus National Assessment (SELENA)-SLE Disease Activity Index (SLEDAI) and Physicians' Global Assessment (PGA) scores, and percentage of pts with no new British Isles Lupus Assessment Group (BILAG) 1A/2B organ domain scores compared with baseline, all by study visit. The last-observation-carried-forward (LOCF) principle (missing values imputed using the last available non-missing value) was applied to pts who withdrew or received protocol-prohibited medication or a dose of allowable medication that resulted in treatment failure prior to the Week (Wk) 52 visit. Descriptive statistics were used.

Results: A total of 93 pts (94.6% female, mean [SD] age 14.0 [2.49] years) were randomised for the intention-to-treat (ITT) population: 53 to BEL and 40 to PBO. Mean (SD) BEL and PBO baseline scores were 10.3 (3.34) and 10.4 (3.63) for SELENA-SLEDAI and 1.3 (0.43) and 1.4 (0.42) for PGA, respectively. Pt number with at least BILAG 1A/2B organ domain involvement at baseline was 37 (69.8%) for BEL and 29 (72.5%) for PBO. SRI4 and SRI6 responses over 52 weeks were mostly numerically higher with BEL than PBO; more BEL than PBO pts were SRI4 and SRI6 responders at Wk 52 (Figure 2). Unadjusted mean (SE) percentage changes from baseline over time in SELENA-SLEDAI and PGA scores generally favoured BEL over PBO, as did unadjusted mean (SE) absolute changes (Figure 2). Wk 52 adjusted mean (95% CI) percentage treatment difference vs PBO was -4.0% (-21.8, 13.9) for SELENA-SLEDAI and -6.1% (-23.9, 11.7) for PGA, while Wk 52 adjusted mean (95% CI) treatment difference vs PBO was -0.7 (-2.4, 1.1) for SELENA-SLEDAI and -0.1 (-0.3, 0.1) for PGA. Over the study duration, numerically more BEL than PBO pts had no new BILAG 1A/2B organ domain scores (Figure 2).

Conclusion: In line with the main analyses performed at Wk 52, further analyses on speeds of improvement across active joint counts, physician and parental global, and absolute change from baseline in Safety of Estrogens in Lupus Erythematosus National Assessment (SLEDAI) and Physicians' Global Assessment (PGA) scores generally favoured BEL over PBO. Combined, these results continue to support the efficacy profile of IV BEL in the treatment of children with cSLE.

References:

Acknowledgments: We acknowledge all PLUTO investigators (PRINTO, Foundation Canadian Institute of Health Research, BIOBEST). Study funded by GSK.


DOI: 10.1136/annrheumdis-2020-eular.4460

SAT0506
MUSEFULPATTERNSOF‘RESPONSE’TOMETHOTREXATEIDENTIFIEDINANATIONALJUVENILEIDIOPATHICARTHRITISCOHORT

S. Shoop-Worrall1,2, K. Hyrich3, L. Wedderburn1,2, T. Thomson2, N. Geifman1 on behalf of BSRAP-ETN Study, BCRD Study and CLUSTER.
1The University of Manchester, Centre for Health Informatics, Manchester, United Kingdom;
2The University of Manchester Centre for Epidemiology and Public Health, JUVENILE IDIOPATHIC ARTHRITIS COHORT (PRINTO), Manchester, United Kingdom;
3Versus Arthritis, Manchester, United Kingdom;
4Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, NIHR Manchester Musculoskeletal BRC, Manchester, United Kingdom;
5University College London, Centre for Adolescent Rheumatology Versus Arthritis, GCS Institute of Child Health, London, United Kingdom;
6Great Ormond Street Hospital NHS Foundation Trust, Paediatric Rheumatology, London, United Kingdom;
7NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom;
8The University of Manchester, Centre for Genetics and Genomics Versus Arthritis, Manchester, United Kingdom

Background: Disease activity following treatment for JIA is currently understood in terms of ‘response’ or ‘non-response’. This state is usually defined using composite measures such as the ACR Pedi scores or cut-offs on the Juvenile Arthritis Disease Activity Scores (JADAS). However, response is a complex state and it is likely that separate, identifiable clusters of childhood Rheumatoid people (CYP) have different, varying levels of response across the individual measures of JIA disease activity. Identifying these clusters may facilitate stratified medicine in JIA.

Objectives: To identify clusters of CYP with distinct patterns of change across the individual JADAS components following MTX initiation for JIA.

Methods: MTX-naïve CYP enrolled into the MTX cohorts of the British Society for Paediatric and Adolescent Rheumatology Etanercept Cohort Study or the UK Biologics for Children with Rheumatic Diseases register before January 2018 were selected. JADAS components (active joint count to 71, physician global assessment (0-100mm), parent global evaluation (0-100mm) and ESR (mm/hr)) were collected at MTX start and at (approximately) 6- and 12-month follow-ups. Outcomes were Log1p transformed for analysis and all outcome data were censored following start of a biologic. CYP were excluded if they had clinically inactive disease at MTX initiation, initiated a biologic within a month of MTX or had no available JADAS data at any time point. Multivariate group-based trajectory models explored MTX response clusters over the first year following MTX initiation using censored-normal models. Linear, quadratic and cubic polynomials were tested, with one to ten trajectories tested within each polynomial group. Optimal models within each polynomial group were selected using Bayesian Information Criteria, after excluding those with groups representing <1% of the cohort, average posterior probability for assigned group <70% or relative entropy <0.5.

Results: Of 657 CYP, the majority were female (69%) and of white ethnicity (85%), with RF-negative polyarticular JIA the most common disease category (33%). The optimal model identified multiple patterns of disease activity following MTX initiation, with greater complexity than the traditional ‘response’ or ‘non-response’ paradigm. Although there were no substantial differences in ESR trajectories between the groups, there were differences in initial disease severity and speeds of improvement across active joint counts, physician and parental global assessments over time. In addition, individual JADAS components did not always change in parallel over time, even within the same cluster of CYP.

Conclusion: There are multiple patterns of disease activity following MTX initiation for CYP with JIA. This suggests that a simple response/non-response analysis at a single time point may be inadequate. Understanding clinical or biological factors associated with these clusters could facilitate stratified medicine in JIA.

Acknowledgments: The CLUSTER consortium is supported by contributions of its industry partners, currently Pfizer, Abbvie UCB, GSK, and Sobi.

Disclosure of Interests: Stephanie Shoop-Worrall: None declared, Kimme Hyrich Grant/research support from: Pfizer, UCB, BMS, Speakers bureau: Abbvie, Lucy Wedderburn: Speakers bureau: Pfizer, Wendy Thomson: None declared, Nophar Geifman: None declared.

DOI: 10.1136/annrheumdis-2020-eular.3241

Saturday, June 06 2020 1209